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ON COMPACTNESS AND OPTIMALITY OF STOPPING TIMES 

G. A. Edgar , A. Millet and L. Sucheston 

Let B be a Banach space with norm II II �9 Suppose that we are 

allowed to view successively as many terms as we please of a sequence 

of B-valued random variables X n. We stop viewing at a time n of 

our choice, and receive payoff X n. Is there a non-anticipative 

stopping rule o which would maximize a continuous convex function S 

of the expected value of Xn? We allow stopping rules (= times) T 

taking on the value ~, and call o optimal if the s-value 

Vr = sup r 
T 

is achieved for o. One interesting case is X n = ~(YI+Y2...+Yn), 

where the B-valued process (Yn) is stationary, and S is the norm 

II II , or, more generally, the distance from a fixed convex set in 

B. We show that if E( IIYI lllog + IIYIII ) < ~, then an optimal o 

exists. If the Yn are independent (which implies that X n is a 

descending martingale), S is sublinear, and E( IIYI II p) < = for 

some p > i, then o is finite a.s. If Yn are real-valued, inde- 

pendent and identically distributed, and E(IYIIIOg+IYI I) = =, then 

there exists a stopping time o such that E(IXol) = ~ (B. Davis [7], 

and B. J. McCabe and L. A. Shepp [18]). This result is generalized 

here to Banach spaces, and the independence assumption is replaced 

by a weaker condition (I). 
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Except for the condition (I), our results are known in the real- 

valued case: see in particular D. Siegmund [24J, Chow-Robbins- 

Siegmund [6], B. Davis [8], and M. Klass [14]. The article of Klass 

is a complete and self-contained presentation of the subject. It 

seems however that the real proofs do not extend; in particular, there 

are no analogues of admissible [6] (= regular [14]) stopping times, 

or of the Snell stopping time (see Snell [25], or Neveu [21], p.124). 

Instead, we apply a recent important theorem of Baxter-Chacon [i] : 

any sequence of stopping times T n (chosen here so that 

~[E(XTn)] § admits a subsequence, still denoted Tn, which 

converges to a randomized stopping time y in the Baxter-Chacon 

topology. We show that under proper boundedness assumptions this 

implies that EX T § EXy, hence y is optimal. To "derandomize", 
n 

we take a closer look at the set of randomized stopping times, noting 

that the non-random stopping times are exactly its extreme points. 

As an application, one proves the existence of a non-random optimal 

stopping time. 

Section i discusses the Baxter-Chacon topology and extreme points. 

In Section 2 we prove a general theorem about the existence of opti- 

mal stopping times, and apply it. Section 3 considers the case when 

E( llylll l~ + IIYIII ) = ~- A discussion of the continuous parameter 

case - the original setting of the Baxter-Chacon article - is given 

in Section 4. 

i. Compactness and extreme points of stopping times. The 

following notation will be used throughout the paper. ~ is the set 

of real numbers; ~ = {1,2,3,...} has its discrete topology; 

~ = {1,2,3 ..... =} is the one-point compactification of ~; B is 

the o-algebra of Borel subsets of [0,i]; ~ is Lebesgue measure 

on B. If S is a topological space, then C(S) denotes the set 

of bounded continuous functions f: S + ~. 

Let (~,F,P) be a probability space, and let (Fn)n~ ~ be an 

increasing sequence of sub-o-algebras of F. By convention, we will 

F write F for the o-algebra generated by U n= I n" A sequence 

(Xn) n~ of random variables is said to be adapted to the sequence 

(Fn) iff X n is Fn-measurable for all n. This situation frequently 

occurs in the reverse order: a sequence (Xn)n~ ~ of random variables 

is known, and F n is defined to be the o-algebra generated by 

X I ..... X n. In this case, we call (Fn) the natural o-algebras for 
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(Xn). Note that F~ is countably generated in this case. 

A stopping time of (F n) is a function ~: ~ + ~ such that 

{~: ~(~) = n} ~ F n for all n ~ ~__ We will write I or E((Fn) n ~ ~) 

for the set of all stopping times. 

We will often extend the probability space (~,F,P) to a larger 

one, namely (~ x [0,i], F x B,P x %). A random variable X: ~ § 

corresponds to a random variable X: ~ • [0,i] ~ defined by 

X(~,v) = X(~); normally we will write X for both cases. The 

notation E for expectation will be used both for S-'- dP and 

for SS-'' dPd~. A randomized stopping time for (F n) is simply 

a stopping time for the sequence (F n x B). To every randomized 

stopping time y: ~ x [0,i] § there corresponds a unique increasing 

rearrangement ~: ~ x [0,I] *I~ such that 

~ { v :  y ( ~ , v )  = n }  = ~ { v :  ~ ( ~ , v )  = n )  

for all ~ ~ ~, n ~, and such that for each ~ ~ ~, the function 

~(~,-) is increasing and left-continuous. In most situations occur- 

ing in this paper, rearrangement with respect to the variable v will 

make no difference. For example, if (Xn)n E~ is adapted to 

(Fn) n ~ and y, ~ are as above, then E(Xy) = E(X~). We will 

write s or r((Fn) n ~ ~) for the set of all randomized stopping 

times, increasing and left-continuous in the second variable. 

Baxter and Chacon [i] have defined a useful topology for the set 

r of randomized stopping times. For completeness, that definition 

is repeated here for discrete time. (See Section 4, below, for a 

brief discussion of the continuous time case.) For y ~ r, the 

u-distribution of y is defined by 

M(~,K) = ~{v: y(~,v) ~ K} 

for ~ ~ ~, K!~--. Then M has the following properties: 

(a) For fixed m E g, the function M(~,-) is a probability 

measure on ~ : 

(b) For fixed n ~, the function M(.,{n}) is Fn-measurable. 

We will write r' for the set of all functions M satisfying (a) 

and (b). (In order to define an element M of F', it suffices to 

define M(m,{n}) for n e~ and add for other sets K !~, or to 

define M(m,{l ..... n}) for n ~ ~ and subtract to obtain M(m,{n}).) 

If M ~ F' is given, we may conversely define a randomized 

stopping time T ~ r by 
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Thus 

M ~ r' 

i f  

y(m,v) = inf{n ~: M(~o,{l ..... n}) > v}. 

P and F' are in one-to-one correspondence. Notice that 

corresponds to a nonrandomized stopping time o if and only 

)I, if o(m) = n 
M(~, {n)) 

, if o(~) # n. 

The Baxter-Chacon topology is the coarsest topology on r' such 

that, for all n ~ and all Y ~ LI(F), the map M § fY(~)M(w,{n})P(d~) 

is continuous. Thus, for sequences, this means that M k converges to 

M in the Baxter-Chacon topology iff 

lim fY(~)Mk(~ ,{n})P(d~) = ~Y(~)M(~,{n})P(d~) 
k§ 

for all n ~ ~ and all Y ~ LI(F). We define the Baxter-Chacon 

topology on r via the bijection above. We write Yk § y(BC) iff 

lim E(Yl{n}(Yk)) = E(Yl{n}(y) ) for all n ~ ~ and all Y ~ LI(F). 
k§ 
(Of course, this is the topology induced on the set of randomized 

stopping times by a weak-star topology.) The usefulness of this top- 

ology is due largely to the following result of Baxter and Chacon [i]. 

For an early very general compactness argument see LeCam [16]. 

i.i. THEOREM. The set r of randomized stopping times is compact 

in the Baxter-Chacon topology. If F is countably generated, then 

F is metrizable, and therefore sequentially compact. 

The set of all functions M such that 

(a) For each ~ ~ ~, M(~, .) is a signed measure on ~; 

(b) For each n ~q, M(.,{n}) is Fn-measurable; 

(c) There is a constant C such that IM(~,k) l < C a.s. for 

all K c_ ~; 

is a topological vector space under the Baxter-Chacon topology. The 

set F' is a compact convex subset of it. The extreme points of F' 

are exactly the u-distributions of the nonrandomized stopping times. 

Each element of F' can be represented as a continuous average of 

these extreme points. This can be proved using Choquet's theorem, 

but it can also be deduced from the equation 

I 
(1.2) M = f0 M~0(''v)dV ' 
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where M e F' corresponds to YO ~ F, and for each v e [0,I], we 

write Myo(. v ) for the m-distribution of the nonrandomized stopping 

time m ~ y0(m,v) . Equation CI.2) can be interpreted to mean 

i 
(1.3) M(~,K) = fO My06"'v)(~'K)dv 

for all m ~ ~, K c~. It follows from this that 

i 
. = E [Xy0 ]dv (1 4) E(X~0) f0 (.,v) 

for any adapted sequence (Xn) n e~ for which the right-hand side 

exists. 

This equation can be used to "derandomize" optimal stopping times. 

1.5. PROPOSITION. Let (Xn)n e~ be adapted to (Fn) n �9 ~. 

Then 

sup E(X ) = sup E(X ), 
y e F ~ ~ Z 

and if one of the suprema is achieved and finite, so is the other. 

Proof. Write 

V = sup E(X). 

Assume that V < ~. Suppose there exists Y0 e P with E(Xy0) > V. 

Then from (1.4), we have 
i 

V < E(Xy0 ) 10 _ = E(Xy0(. ,v) )dv 

i 
< f Vdv=V. 
- 0 

Therefore E(Xy0(.,v)) = V for almost all v e [0,i], and hence for 

at least one v. But then we have E(Xy0) < V for all Y0 ~ F, and 

if sup E(Xy) is achieved, so is sup E(Xa). 
y~ F ~ Z 

1.6. COROLLARY. If there exists YO ~ F, finite a.s., with 

E(Xy0) = sup E(Xy) = V, 

then there also exists g0 ~ Z, finite a.s., with 

E(Xo0) = V. 
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Proof. Represent Y0 as in (1.2). Then, for almost all m, 

0 = l{v: u = =}. So there exists v with both 

P{y0(-,v) < =} = i and E(Xy0(.,v )) = V. 

For a derandomization in the vector-valued case, we use Jensen's 

inequality in a Banach space B. 

1.7. THEOREM. Let (Xn)n e~ be an adapted sequence of Bochner 

integrable random variables in a Banach space B, and let ~: B + 

be continuous and convex. Then 

sup #(E(Xy)) = sup ~(E(Xa)), 
u c P o ~ E 

and if one of the suprema is achieved and finite, so is the other. 

If this supremum is achieved by Y0 e P which is finite a.s., then 

it is also achieved by o 0 ~ I which is finite a.s. 

Proof. Write 

Assume Vr < ~. Suppose 

u as in (1.4). Then 

V~ = sup ~(E(Xo)). 

YO ~ P and r > Vr Represent 

so r = V~ 

is as before. 

V~ _< ~(E(Xy0)) = ~(f0 E(Xy0(''v))dv) 

I 

i fo ~(E(Xy0(''v)))dv 

1 
i f0 V,dv = V,, 

for almost all v. The rest of the proof 

2. Optimal stopping time: general case. In this section we 

study the optimization of ~(EX ), where (X n) is a Banach-valued 
T 

process, and ~ is a real-valued continuous convex function defined 

on the Banaeh space (e.g., the norm). Also conditions are given for 

the convergence of Banach-valued stopped processes Xyn, when Yn 
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are randomized stopping times converging in the Baxter-Chacon topology. 

B will denote a Banach space with norm II II - 

2.1. LEMMA. Let (yn) be a sequence of randomized stopping 

times that converges to a randomized stopping time T in the Baxter- 

Chacon topology. Then for every Bochner integrable random variable Y, 

and for every function f continuous on ~, E[IAYf(yn)] converges 

strongly to E[IAYf(y) ]. 

Proof. Fix f ~ C(~), and first suppose that Y is a step- 

function, i.e., Y = l<~<k XilAi, where x i ~ B, and A i ~ F, 

i = i ..... k. Then for any n ~ r, we have 

= f(n) ]. E Yf(n) l<~<k xiE[1Ai 
By the definition of the Baxter-Chacon topology on P, the 

sequence E[iAif(Yn)] converges to E[iA.f(y)] for every i = i ..... k, 
i 

and hence the announced strong convergence holds for step-functions. 

Now let Y be a general Bochner integrable random variable. Fix 

> 0, and let Z be a step-function such that E IIY - ZII ! ~ �9 

Then for every ~ ~ F we have 

IIE[Yf(~)] - E[Zf(~)]II < ellfll . 

Now apply this inequality with ~ = Yn' and ~ = T - 

Let (Xn, n ~ i) and X be B-valued random variables, and let 

A ~ F. We say that X n converges to X i__n_n distribution on A, 

in symbols X n ~X on A, if for every continuous and bounded real- 

valued function g defined on B, E[IAg6Xn)] converges to 

E[IAg(X)]. The following proposition gives conditions for the 

convergence of the stopped process X to X if Yn § y(BC). 
Yn T 

2.2. THEOREM. Let (yn) he a sequence of randomized stopping 

times that converges to y ~ F in the Baxter-Chacon topology. Let 

(B, II II) be a Banach space, and let (Xnn ~) be a B-valued 

Bochner integrable adapted process, such that X n converges strongly 

almost surely to X as n § ~. Then for every set A ~ F, X 
Yn 

converges in distribution to X on A. If furthermore E(sup IIXnll)<=, 
Y 
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then for every set A e F, E(IAXyn) converges strongly to E(IAXy). 

Proof. We prove the second part of the theorem first. Suppose 

that E(sup I]Xnl ] ) < ~. Fix K > I; for every set A ~ F and for 

every n, 

HE(IAXTn)- E(IAXy))} < IIE(I A E(I A II 
- n {Yn<~}Xyn ) - ~ {~<K}X~ ) 

+ IIE(I A G {Tn>K}X~ ) - E(I A &{y >K}X~) II 

+ IIE[I A ~ {K<Tn<~}(X n- X) Ill + IIE[IA ~ {K<y<~}(Xy - X) Ill �9 

Hence 

IIE(iAXyn) - E(IAX Y) II < ~ llE[IAXil{i}(Tn ) ] - E[IAXiI{i}(-Y) Ill 
- -  l<i<K 

+ I IE[1AXooI[K+I ,o~](Y n ) ]  - E [1AXoo l [K+ I ,oo ] (Y ) ] ] I  

+ 2E[I A sup IIX i - x l l ]  
K<i<~ 

Since X n converges strongly to X a . s .  on A, the sequence 

i A sup II X X 1 I, dominated by sup llXn{{ converges to zero a s. 
K<i<~ i ' " 

as K + ~. Fix e > 0, and choose K such that Eli A sup [[ Xi-X II] < s. 
K<i<~ 

Then applying Lermna 2.1 with Y =IAX i, f = l{i}, and with Y - lAX ~, 

f = I[K+I,~ ] , one can choose n o such that for every i = i ..... K, 

one has 

sup IIE[1AXil{i}(Tn ) ] - E[IAXiI{i}(7) Ill < e/K, 
nin 0 

and also 

sup I(E[IAX l[K+l,~](yn)] - E[IAX I[K+I,=](7)]II < s" 
nhn 0 

Then n ! n O implies IIE(IAXyn) E(IAXy) II ! 4e, which proves 

the second statement in the proposition. 

We now prove the first assertion of the theorem. Let g be a 

continuous bounded function from B to ~, and let Zn= g(Xn), 

n ~ ~. The real-valued process (Z n) clearly satisfied the two 

assumptions Z n § Z~ a.s., and E(suplZnl) < ~ Hence by the first 

argument, for every A ~ F, E[IAg(Xyn) I converges to E[IAg(.Xy)]. 

This completes the proof. 
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An example of a process (X n) satisfying the hypotheses of 

Theorem 2.2 is an Ll-bOunded martingale with values in a Banach space 

B with the Radon-Nikodym Property. 

2.3. COROLLARY. Let (B,[I II) be a Banach space, let ~: B + 

be a continuous function. Let (Xn: n ~) be a B-valued adapted 

process such that E(sup IIXnH) < =, and such that X n converges 

strongly almost surely to X . Then there exists a randomized stop- 

ping time y such that 

~(EXy) = V~ = sup{~(EXn): n e F} < ~. 

Proof. Since only countably many Bochner integrable random 

variables are involved, we may assume that F is countably generated. 

Choose a sequence Yn in F such that lim~(EX V ) = V~. Since the 
-n 

set r is sequentially compact for the Baxter-Chacon topology, there 

exists a subsequence (Ynk) of (yn), and a y ~ F such that 

+ y(BC), By Proposition 2.2 the sequence EX converges 
Yn k , Ynk 
strongly to EXy; the continuity of ~ implies that ~(EX ) + 

Yn 
~EX)" = v ~  < ~. 

Using the results in Section i, we obtain the existence of non- 

randomized optimal stopping times if ~ is convex. 

2.4. THEOREM. Let (B, II [I ) be a Banach space and let ~: B ~ I% 

be a convex continuous function. Let (Xn: n c~) be a B-valued 

process such that E(sup llXnll ) < ~, and X n converges strongly a.s. 

to X as n § ~. Then there exists a nonrandomized stopping time 

a ~ E such that 

(2.5) ~(EXo) = V~= sup{~(EX ): ~ ~ E} 

= sup{~(EX ): ~e r} < ~ . 

Proof. Since the function ~ is continuous, Corollary 2.3 

insures the existence of an optimal randomized stopping time y ~ F. 

By Theorem 1.7, the convexity of ~ insures that sup{~(EXT): T e E} = 

sup{~(EXy): y ~ F}, and that there exists a nonrandomized stopping 

time o e I such that V~ = ~(EXo)- 

We now give examples of processes (Xn: n ~ ~) and functions 
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that satisfy the assumptions of Theorem 2.4. Recall that if 

(Yn: n e ~) is a stationary R-valued process with E IIYIII < ~, then 

by E. Mourier's ergodic theorem [20], the Cesaro averages 

Xn __ nl i!n Yi converge strongly a.s. to a random variable X 

with EX = EY I. 

2.6. THEOREm. Let (B, II If) be a Banach space, and let (Yn ~ 

be a B-valued stationary stochastic process with E( IIYIII log + IIYIII ) <~. 

_ I [<n Yi' and let X be the almost For every n ~ ~, set Xn - n i 

sure limit of X n. Then given any continuous convex function 

~: B § there exists a nonrandomized stopping time a ~ Z such that 

(2.7) #(EX ) = V~ = sup{~(EX ): x ~ 7} < ~. 

Proof. By Wiener's dominated ergodie theorem applied to the real- 

1 ~ i nllYil l valued stationary process IIYnII, we have sup llXnll ! sup ~ i< L I 

(see e.g. [i0], p. 678). Now apply Mourier's theorem and Theorem 2.4. 

2.8. COROLLARY. Let (Yn' n e ~), and (Xn: n <~) be as in 

Theorem 2.6. Given any convex set C c B, and for every x ~ B, let 

r denote the distance between x and C. Then there exists an 

optimal stopping time for #, i.e., an element a e ~ such that (2.7) 

is satisfied for ~. 

Proof. It suffices to notice that the distance between x and a 

convex set is a continuous, convex, real-valued function. 

The corollary shows in particular that there exists an optimal 

stopping time for the norm of the Cesaro averages X n of a stationary, 

L Log L-bounded process taking values in ~2 The following example 

implies that there does not exist a stopping time ~ e ~ optimal for 

= sup{EX : T ~ l} even in the case the Xn; i.e., such that EX a T ' 
! 

where the Yi s are independent, identically distributed, positive 

and bounded. (The supremum is to be taken in the coordinate-wise 

ordering of ~2.) This example also shows that the stopping times 

a such that IIEXall = Vll II depend on the choice of the norm II II, 

and that given a norm, the optimal stopping times for IIEXal I and 

for E lJXaJJ need not be the same. 
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2.9. Example. Let (A n) be a sequence of independent events 

each of probability 1/2. For every n ~, set 

= iAn+ _ i ~ Yi' Yn (i,0) (O'l)iAc' Xn - n l<i<n 
n 

I I For every randomized and let X = (~,~) be the a.s. limit of X n- 

stopping time y ~ F, and for every (~,v) ~ ~ x [0,I], 

Xy(~,v) = (au with ay(i~,v) + by(~,v) = i. Hence if 

= (x ,yy) = , , EXy , then xy + yy i. However let a I [resp. a2 ] 

be the a.s. finite stopping time defined by al(m) = inf{n: ~ ~ An} 
�9 , A c [resp ~2(~) = inf{n: ~ e n}]. Then 

IX i] I = IAI + �89 1 c +'" "+ I i +. and 
A I 11 A 2 p c A c " " ' AIN "-- a p_INAp 

EXal (Xal,Yal) with x i i!l I i i ~. ~(~) > A similar computation 

shows that EXa2 = (xa2,Ya2) with ya2 > ~. Hence 

sup{EX : a ~ E, a finite a.s.} > (~,~), and this supremum cannot 

be achieved by a randomized stopping time. Now set II(x,y)II I = Ixl+ IYl 

and ll(x,y) l~ = sup(Ixl,lyl). Then for i = I, ~, and for every 

~ F, [IEXy l[i i E(II X~ll i ) J I. By the argument given above, for 

every stopping time ~ ~ Z, IIEX II I = Eli X II I = I. Clearly 

E IIXII[ = I IIEX III _ I ' ~ 2' and if a I is the stopping time defined 

5 
above then IIEXalI] ~ > ~. Hence a = I is optimal for I[ IIi, 

but not for II II~. 

The example shows that for a Banach lattice B there need not 

exist an optimal stopping time. However, for a large class of lattices 

there exists a maximal stopping time for B+. 

2.10. COROLLARY. Let B be a Banach lattice such that for any 

x,y ~ B +, x < y implies llxll < IlYll (ep-spaces have this property 

if i < p < ~). Then under the conditions of Theorem 2.4, and assuming 

also the process positive, there exists a maximal stopping time o; 

i.e., a ~ E such that for every ~ ~ ~, the inequality EX < EX 
O T 

fails. 

Proof. Set ~(X) = llxll , and let a be an optimal stopping time 
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for ~, i.e., suppose that (2.5) holds. For any ~ ~ Z, the inequality 

EX ~ < EXT implies IIEX II < IIEX I[ , which is a contradiction. 

Hence o is maximal. 

We show that if the process (X n) takes values in ~P, one can 

weaken the assumption that X n converges a.s. and obtain a result 

similar to Proposition 2.2. The case of ~P can be also reduced to 

the case of ~i = ~ by consideration of linear functionals, but the 

proof given below is more in the spirit of the present paper. 

2. ii. PROPOSITION. Let (yn) be a sequence of randomized 

stopping times that converges to a randomized stopping time y in the 

Baxter-Chacon topology. Let (Xn: n e 9) be a stochastic process 

taking values in ~P, and let A ~ F. Suppose that 

(i) X > I-~ X n on A, and lAX ~ is integrable, 

(ii) sup(iAXn +) is integrable, 

(iii) sup E(IAX n) ~ I~ p, 

(iv) E(IAX-) C ~P. 
y 

Then E (IAX Y) > I-~ E (iAXyn). 

Proof. The sequences sup (IAX i) decreases to IAI~ Xn, as 
k<i<~ 

k § ~, and is bounded from above hy iAsup X+n ~ LI' and from below by 

(IA il-~ X n)-, which is an integrable function by assumption (iii). 

Hence applying the dominated convergence theorem, we obtain 

E(IA zl-i-m X n) = lim Eli A sup Xi]. For every x ~ ~P, set 
k k<i<~ 

IIxll = sup{Ixjl: l<j<_p}, and let u = (i,...,I) be the unit 

vector of ~P. Fix e > 0; choose e > 0 such that P x l(B) < 

implies E[IA~ B IIXyII] < e, and E[IA~ B JIX II] < e. Choose 

K~ ~q such that P • l{K < y < ~} < e, and such that 

Eli A sup X i] < E[IAI-~ X n] + eu. 
K<i<~ 

Then 

E(IAXy) = E(I A ~{y<_K}Xy) + E(.I A f~{K<y<~}Xy) + E(I A ~{y=~}X ) 

_> E(I A ~{y<K}Xy) - eu + E(IA~ {K<y<=o}X ) - eu + E(I A ~ {y==}X ). 
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Applying L~.a 2.1 with Y = IAXi, f = l{i}, and with Y = lAX , 

f = I[K+I,~], we obtain 

E(IAXy) _> limn E(IA ~{Yn<K}Xyn) + lira E(I A~{Yn>K}xo) - 2eu 

>_ ~{E(I A a {Yn<K}Xyn) + E(I A ~ {yn=~}Xyn) 

+ E(!A ~{K<Yn<=}~ Xk)} -2eu 

> I-~ {E(IAI{yn<K } U {yn=~}Xy n) 

sup X i) } - 3eu + E(IAI~{K<Yn<~} K<i<~ 

_> ~ E(IAXyn) - 3eu. 

2.12. THEOREM. Let (Xn: n gl~) be a stochastic process 

taking values in II p , and such that E(sup P E l(X n) il) < ~, and 
n i=l 

X _> ~ X n. Let r be an increasing continuous function defined 

on the closed convex hull of U {Xn(~) : n ~ ~). Then there exists an 

optimal randomized stopping time y ~ F such that 

r = Vr = sup{~(EX n): n ~ r}. 

If in addition r is ass~ed to be convex, then the optimal time 

can be chosen non-randem, i.e., there exists o ~ E such that 

r o) = Vr = sup{r ): ~ e Z} = sup{r y e r}. 

Proof. Let (yn) be a sequence in F such that 

Vr = lim r ) =sup{r ~ g F}. Let (yn k) be a subsequence 

of (yn) that converges to an element y e F in the Baxter-Chacon 

topology. Then by Proposition 2.11, E(Xy) ~ lim E(Xyn). The 

monotonicity and continuity of r implies that 

r ~ r EXyn) ~ ~ r = Vr 
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If ~ is convex, then Theorem 1.7 shows that there also exists an 

optimal non-random stopping time a e ~. 

Finally we show that there exists a finite optimal stopping time 

for the process X n = II~ ~ Yil { , where Yi is a Banach-valued 
l<i<n 

independent identically distributed sequence and llYiII ~ Lp, p > I, 

thus generalizing the result of B. Davis [8] to Banach-valued processes. 

For this the condition E( IIYI II log + IIY I II ) < ~ is not sufficient 

even in the real-valued case, as shown by M. Klass [14]. 

2.13. THEOREM. Let B be a Banach space, and let #: B +~ be 

a continuous function such that ~(x + y) < ~(x) + ~(y), and 

~(~x) = ~#(x) for every a > 0, and for every x,y ~ B. Let 

(Yn: n ~ ~q) be an independent identically distributed B-valued 

sequence of random variables with mean 0, and with E IIYI IIp < ~ 

_ i ~ Yi' and let X = 0. for some p > i. For every n > i let X n n i~n 

Then every stopping time a ~ E such that ~[EX a] = V~ = sup{#(EX ):T eE} 

satisfies P(a < ~) = I. Hence there exists an a.s. finite stopping 

time a ~ E such that ~(EX o) = V~. 

Proof. The assumptions made on ~ clearly imply the convexity 

of #. Hence by Theorem 2.6 there exists a e r such that 

#(EX a) -- V~. It suffices to show that any such a is finite a.s. 

Let a ~ E satisfy ~(EX ) = V~, and let x = EX a. By the Hahn- 

Banach theorem, there exists a linear functional x* on B such that 

x*(x) = #(x), and -~(-y) < x*(y) < #(y) for every y e B. The 

continuity of ~ clearly implies t-e continuity of x*. For every 

T ~ E, we have 

E[x*(X )] = x*[EX ] _< ~[EX ] < V~. 

Since E[x*(X )] = x*(x) = ~(x) = V~, the stopping time a is 

optimal for the real-valued process (x*CXn)). Set Z n = x*(Yn); 

since x* is continuous, and E( IIYI II p) < ~, we have EIZnlP < ~. 

Now x*(X n) are Cesaro averages of the real-valued process Z n. 

Since B. Davis [8] has proved that an optimal stopping time a for 

such a process (x*(Xn)) is finite a.s., the proof is concluded. 
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3. Stopping rules under a weak independence assumption. In this 

section we introduce a condition ~I) weaker than independence, and 

show that under CI) a stationary Banach-valued process (Yn) is 

of class L Log L if and only if for every stopping time o , 

llYoll 
E(I{o<~} o ) < ~" A similar characterization is obtained in terms 

of the Cesaro averages. 

Let (An) n>l be a family of o-algebras; typically A n is 

generated by a single random variable Yn" Let F n = o( [J Ai). 
i<n 

We say that (An) [or (Fn) ] satisfies the condition (I) if there 

exists a strictly increasing sequence of integers (Nk)k> I, and a 

constant ~ with 0 < ~ < i, such that 

N k 
(3. i) illN 72- < ~, 

(3.2) •k _> i, VA e FNk, VC e ANk+I' 

IP(A ~ C) - P(A)P(C) I <_ ~P(A)P(C). 

The condition (I) is a weakening of the (*)-mixing condition 

introduced by Blum-Hanson-Koopmans[4]; see also [23], p. 140. We 

refer to [4] for examples. In the case when the A n are atomic and 

N k = k, the condition (I) coincides with the Vitali-Chow condition 

(see e.g. Neveu [21], p. 73). 

If (An) satisfied the condition (I) , then for every Banach 

space (B, II II) we have 

(3.3) Irk > 2, VX ~ L B ), VD 
(FNk_ I AN k 

II E(IDX) - P(D)E(X)II <_ ~P(D)E llXll 

and 

(3.4) Vk _> 2, VA e FNk_I, VX ~ L~(ANk), 

lIE(lAX) - P(A)E(X)II <_ ~P(A)E llXll . 

We only show the assertion 3.3. Let X be an FNk-measurable 
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step function, say X = ~ XilA , with x. ~ B, Ai ~ ~k-i 
i~ l l ' 

i = l,...,n, and let D ~ ANk. Then 

IIE(IDX) - P(D)E(X)II i .~ llxill IP~i f~ D) - P~i)P(D)I 

~ I IIxill P(Ai)P(D) = ~(D)E IIXII . 

Fix s > 0, let X ~ L~(FNk_ _i ) and let Z be an FNk_I -measurab le 

step function with E fIX - ZII < e. Then 

IIE(IB X) - P(D)EXII < 2E + IIE(IDZ) - P(D)EZII 

_< 2s + ~P(D)E IlZll _< 4s + ~P(D)E 11Xll 

A process (Yn)n>l is said to satisfy condition (I) if the 

family A n = o(yn ) ~oes. 

We prove next our main result on condition (I). If the Y n 
are real-valued, independent, and identically distributed, the 

implications (ii) ~ (i) and (iii) ~ (i) are due to Burkholder [5]; 

the implications (iv) ~ (i) and (v) ~ ~i) to B. Davis [7] and 

independently to McCabe-Shepp [18]. 

3.5. THEOREM. Let B be a Banach space, and let (Yn)n>l be 

a stationary B-valued Bochner integrable process. Suppose teat (Yn) 

satisfies the condition (!) for an increasing sequence of integers 

(Nk). Then the following conditions are equivalent: 

(i) E( IIY III Log + IIY III ) < ~; 

Y n (ii) E(sup II-~-II ) < ~; 

(iii) E sup( I i!n llYill ) < =; 

(iv) •o ~ E, E(I{o<~ } ) < ~; 

(v) Vo ~ E, E(l{o<=}II I YN II ) < ~- 
Nk_<O k 

i 
Proof. By the pointwise ergodic theorem, the sequence ~ ~ IIYil 1 

Y i<n 
converges a~ and hence II~ll converges a.s. to zero. By Wiener's 

dominated ergodic theorem applied to the process llYnl I , 6i) --> (iii] 
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(see e.g. [i0], p. 678). Since 

Y 

-< "~ l<" In Yi'l + 'In--~ ~ i- Yi'l , 

(iii) implies (ii). Obviously (ii) ~ (iv), and (iii) ~ (v). We 

only prove (.iv) ~(i), and (v) ~ (i). Given e with 0 < e < i, let 

(N k) be the strictly increasing sequence such that ~ = o(Yn ) 

satisfied the conditions (3.1) and (3.2). 

Proof of (iv) ~ (i). Fix E > 0; applying the pointwise ergodic 

theorem, choose N i ~ i and a set A ~ F such that for every 

n ~ Ni, we have llYnll i n/2 on A. By assumption (3.1), we also 

may assume that there exists a constant c such that N k ! ck for 

every k. Define a stopping time ~ ~ Z by 

c = inf{Nk: N k > N i, IIYNkll > Nk}, 

with the convention inf ~ -- +~. Clearly 

process (Xn), and a stopping time �9 e Z, 

E(I{~<=}X ). By assumption (iv), 

= += on A. Given a 

we write EX for 
T 

i__ 
> E( ) = k>i[ Nk {OJNk} IIYNkll dP. 

The set {o~N k} = i<j<k-ll~ {IIYNjll < Nj} is FNk_I measurable. 

Applying the relation (3.4) with the set A = {o ~ N k} and 

X = i{ llYNkll~Nk } IIYNkll , we obtain 

> (l-e)k! i- N~ p(~ ~ Nk)E(I { IIYNklI~N k} IIYNkll ) 

(l-~)k! i N~P(A)E(I{ IIYIII~Nk } IIYIII ). 

Since e < i and P(A) > 0, we have for fixed i 
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k>i {IIYI I>N k} 0 Ni<_Nk<X 

where e llylll denotes the distribution of IIYI II �9 

ck < x implies N k < x. Hence if x > N i, we have 

! 
N k )P lJY1 II (dx), 

We have that 

1 1 1 [c x-]+l dx 
l Nk > <~ ~ Ni<_Nk~{ - i<k x/e ck --> F fi x 

> l[Log x - Log ci]. 

This clearly implies that E[ IIYIII Log + IIYIII] < ~. 

Proof of (v) --> (i). Let o be the stopping time defined in the 

proof above. Then 

Nk<~ -- Nk+l-<~ 

-- Nk+l<O 

By the proof of (iv)--> (i), it suffices to show that E(II~m) < ~,----~ 

and hence that E( I ~ IIYN. II ) < ~" We have 
Nj+I<~ j 

E(I Z llyN ] II ) = [ 
Nj+I<O 

- -  " k>i 

< k!i 

~kE(l{~ } j<_~-i IIYNj II ) 

1 IIYNk II >-Nk} ) Nk l<j!k-i E( IIYNjll i{ 

Applying the relation (3.3) with X = I[YNj II , which is measurable with 

respect to FNk_I, and with D = { IIYNklI>N k} E ANk, we have 

i 

k!i N l<j!k-1 IIYNj 

< (I+~)E IIYIII k!i P(IIYIII>--Nk) 

II P(IIYNkN>Nk) 



i (I+~)(E IIYII I )2 < ~. 

This completes the proof of the theorem. 

The theorem of Davis [7] and McCabe-Shepp [18], and the theorem 

of Dvoretzky (see e.g.[6], p. 86) were extended to tactics on 

directed sets, in particular to stopping times in ~ x ~, by 

Krengel-Sucheston [15], by application of their linear embedding 

theorem. Since, as noted in [16], the linear embedding preserves 

also vector-valued integrals, the results of the present paper 

concerning averages of vector-valued independent identically distri- 

buted random variables extend similarly to directed sets. 

4. Continuous parameter. In this section we extend some results 

of Sections i and 2 to continuous-parameter processes. Let (~,F,P) 

be a probability space, and let (Ft: t ~ [0,=]) be an increasing 

right-continuous family of sub-o-algebras of F such that F 0 

contains the null sets. A stopping time of (IF t) is a map 

~: ~ § [0,~] such that {~: a(~) J t} ~ F t for every t ~ [0,~]; 

we again write E for the set of all stopping times. A randomized 

stopping time for (Ft) is a map y: ~ x [0,i] § [0,=] which is a 

stopping time for (F t • B); we assume that y is non-decreasing 

and left-continuous in the second variable. We will write r for 

the set of randomized stopping times. For every y C F, the 

u-distribution of y is defined by 

M(~,[0,t]) = sup{v: y(~,v) < t} 

for w ~ ~, t ~ [0,~]. Then M has the following properties: 

(a) For fixed ~ ~ ~, the function M(m,.) defines a 

probability measure on ~. 

(b) For fixed t ~ [0,~], the function M(.,[0,t]) is 

Ft-measurable. 

We will write r' for the set of all functions M satisfying (a) 

and (b). There is a one-to-one correspondence between r and r' 

(see [I] for details). As in the discrete case, M ~ F' corresponds 

to a nonrandomized stopping time o if and only if M(~,[O,t]) = 

l{o<t}(~). The Baxter-Chacon topology on F is the coarsest 

topology such that for every Y ~ LI(F), for every f ~ C([0,~]), 

the map y § fY(~)f[~(~,v)]P~dw)~(dv) is continuous. Baxter and 
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Chacon have shown that the set F is compact for this topology 

([I] Theorem 1.5). 

The following theorem is analogous to a result used in Section i. 

4.1. THEOREM. The extreme points of F' are exactly the 

~-distributions of the nonrandomized stopping times. 

In the sequel we will consider an adapted Banach-valued process 

(Xt,Ft,t ~ [0,~]) such that 

(4.2) 

(4.3) 

E(sup IIXyll ) < ~ 

X t is right-continuous, 

(4.4) Vo n ~ E, On2 o implies X + X a.s. 
o n o 

For real-valued processes (Xt), condition (4.4) is equivalent 

with quasi-left-continuity, and the property X = lim X t a.s. 
t~ 

The following theorem is an analog of (1.4), above. 

4.5. THEOREM. Let y ~ r be a randomized stopping time, If 

(X t) is an adapted process satisfying the conditions (4.2) and ~4.3~, 

then 1 

E(X) = f0 E Xy(.,v)dV. 

Proof. As in (1.2), we have 

1 

f0 M(.,v)dV. 
Then for every A ~ F, for every t ~ [0,~]. 

1 
flAMy(w,[0,t])P(d~) = f0 flA(~)MY(''v)(W'[0't])P(d~)dv 

= /IA(~)%{v: y(w,v) <_ t}P(d~). 

Hence My(~,[0,t]) = %{v:y(w,v) < t} a.s~ For every j > I, let 

y[j] be the smallest element k72 j such that y < k/2J~ Then for 

every j > i, 
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E(Xy[j]) = fX2_ j(m)M(.m, [0,2 -j])P(dm) 

+ fk!2 Xk2-J(~)M(m'](k-l)2-J' k2-J])P(dm) 

= ~X2_j(m) X{v: y(m,v) <_ 2-J}P(dm) 

+ fk!2 Xk2-J(m) X{v: (k-l) 2-J < y(m,v) < k2-J}P6dm) 

i 
= fO E(Xy(.,v) [j ])dv. 

Letting j + ~, and using the properties (4.2) and (4.3), we 

obtain i 

E(Xy) = lira = lim f E(Xy )dv J EXu ] 0 (.,v) [j ] 

i 
= E(Xu . f0 ('v))dv" 

The following theorem allows us to "derandomize" continuous- 

parameter optimal stopping times. The proof, similar to the proof of 

Theorem 1.7, is omitted. 

4.6. THEOREM. Let B be a Banach space, let ~: B § be a 

continuous and convex function. Let (X t) be a B-valued adapted 

process with the properties (4.2) and (4.3). Then 

V~ = sup ~[E(Xy)] = sup ~[E(Xo)], 
y ~ F ~ ~ Z 

and if one of these suprema is achieved and finite, so is the other 

one. If the supremum is achieved by u ~ r which is finite a.s., 

then it is also achieved by o 0 e E which is finite a.s. 

We now study the convergence of the stopped sequence X , when 
Yn 

~n § Y (BC) and (Xt) is an adapted process with the Properties 

(4.2) - (4.4). 

The following theorem is a generalization of Corollary 1.15 in [I], 

and the proof is similar. 

4.7. THEOREM. Let B be a Banach space, let (Xt: t e [0,~]) he 
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a B-valued right-continuous, quasi-left continuous process such that 

E(sup llXtll ) < ~. Let Yn be a sequence of randomized stopping times 

such that Yn converges to a randomized stopping time y in the 

Baxter-Chacon topology. Suppose that lim sup P x ~(Yn > a) = 0. 
a+~ n 

Then for every A ~ F, E(IAXyn) converges to E(IAXy). 

Proof. The proof of this theorem depends on several l_~mmas 

stated below. 

4.8. LEMMA. Let (yn) be a sequence of randomized stopping times 

taking values in a finite set K c [0,=], and converging (BC) to a 

randomized stopping time y. Suppose that the random variables 

(X t, t ~ K) are Bochner integrable. Then 

E(IAXyn) § E(1AX ), A E F. 

Proof. The lemma is first proved for step functions (Xt: t ~ K). 

The proof is similar to the one in [I], L~a 4.1. 

For every y ~ F, and every j > i, let y[j] be the j-th 

dyadic approximation of y from above, i.e., y[j](m,v) = 

inf{k/2J; k/2 j > y(m,v)} (with the convention inf 0 = +~). 

The following lemma is similar to Theorem 1.8 [i], and the proof 

is omitted. 

4.9. LEMMA. Let u ~ F converge (BC) to y ~ F, and satisfy 

lim sup P x %{Yn ~ a} = 0. Let B be a Banach space, and let (X t) 
a+~ n 
be a B-valued right-continuous process such that E(sup llXtll ) < =. 

Suppose ~hat for every A E F 

I~ E(IAXyn[j]) = E(IAXyn ) uniformly in n. 
3 

= ). Then for every A E F, E(IAX Y) lira E(IAXyn 

The following lemma is similar to Ls~ma 5.1 [I]; again the proof 

is omitted. 

4. i0. LEMMA. Let (X t) be a Banach valued process such that 

E(sup llXt II ) < =- Suppose that for every e > 0, and for every 
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sequence (to n ) in E such that lim sup P(a n > a) = 0, one has 
a+= n 

limj SUPn P{ fiX~ n[j] - X nll > E} = 0. Then for every A e F, and for 

every sequence Yn e F such that Yn § Y (BC), and 

lim sup P • l(Yn > a) = 0, one has 
a+~ n 

i~ E(IAXyn[j ]) = E(IAXyn) uniformly in n. 
3 

Sketch of Proof of Theorem 4.7. Because of Lemmas 4.8-4.10 

and the condition E(sup llXtll ) < ~, the proof of the theorem reduces 

to the proof of the following: for every e > 0, and for every 

sequence (a n) in E such that lim sup P(ra n > a) = 0, one has 

lira sup P( llXon[j ] - Xonll > E) = 0. This is proved via the arguments 
j n 

given in Lemma 5.9 and 5.11 in [i], setting f(x,y) = llx-y[[ /(i+ llx-yll ), 

and Y(s,t) = sup{f(Xs,Xr): s j r _< t}. 

4.11. COROLLARY. Let (Tn) be a sequence of randomized stopping 

times such that Yn converges to a randomized stopping time y in 

the Baxter-Chacon topology. Let (X t) be a Banach-valued process with 

the properties (4.2)-(4.4). Then for every A ~ F, E(IAX Y) = lim E(IAXyn), 

and X converges in distribution to X on A. 
Yn Y 

Proof. Let T: [0,~] § [0,i] be a continuous bijective and 

increasing function. For every s ~ [0,i], set Ys = X i and 
T- 6s) 

Fr_l(s) = . 
G s = . For every s ~ I, set Ys = X and G s F The 

proof of the theorem reduces to the proof of the convergence of 

E(IAYToYn) to E(IAYToy). The process (Ys) clearly satisfied 

the assumptions (4.2)-(4.4), and the sequence ToYn is bounded by I, 

so that Theorem 4.7 applies. 

We now deduce the following theorem about the existence of an 

optimal stopping time for ~(EX ). It is a continuous parameter 

analog of Theorem 2.4. 

4.12. THEOREM. Let (B, II II) be a Banach space, and let ~: B +IR 

be a convex continuous function. Let (X t, t ~ [0,=]) be an adapted 
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process with the properties (4.2)-(4.4). Then there exists a non- 

randomized stopping time ~ ~ Z such that 

~(EXo) = V~ = sup{~(EXx): �9 ~ Z} 

= sup{~(EXu y ~ F} < ~. 

Proof. The theorem is a consequence of Theorem 4.6, and 

Corollary 4.11. We refer to the proof of Theorem 2.4 for details. 
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