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ON COMPACTNESS AND OPTIMALITY OF STOPPING TIMES

% *%
G. A. Edgar , A. Millet and L. Sucheston

Let B be a Banach space with morm || || . Suppose that we are
allowed to view successively as many terms as we please of a sequence
of B-valued random variables X . We stop viewing at a time n of
our choice, and receive payoff X,- 1Is there a non-anticipative
stopping rule o¢ which would maximize a continuous convex function ¢
of the expected value of X, ? We allow stopping rules (= times)
taking on the value «, and call o optimal if the ¢-value

¢

is achieved for o. One interesting case is X = %(Y1+Y2...+Yn),
where the B-valued process (Yn) is stationary, and ¢ 1is the norm
| ||, or, more generally, the distance from a fixed convex set in
B. We show that if E(||Yl||log+||Y1H ) < =, then an optimal o

exists. TIf the Yn are independent (which implies that Xn is a

V= sup ¢[E(X )]
T

descending martingale), ¢ 1is sublinear, and E( HYl]|p) < o for
some p > 1, then ¢ 1is finite a.s. If Yn are real-valued, inde-
pendent and identically distributed, and E(|Y1|log+|Y1|) = «, then
there exists a stopping time ¢ such that E(|X0|) = o (B. Davis [7],
and B. J. McCabe and L. A. Shepp [18]). This result is generalized
here to Banach spaces, and the independence assumption is replaced

by a weaker condition (I).

*
The research of this author is supported by the National Science
Foundation, Grant MCS-8003078.

Fdke
The research of this author is supported by the National Science
Foundation, Grant MCE-8005395.



37

Except for the condition (I), our results are known in the real-
valued case: see in particular D. Siegmund [24], Chow-Robbins-
Siegmund [6], B. Davis [8], and M. Klass [14]. The article of Klass
is a complete and self-contained presentation of the subject. It
seems however that the real proofs do not extend; in particular, there
are no analogues of admissible [6] (= regular [14]) stopping times,
or of the Snell stopping time (see Snell [25], or Neveu [21}, p.124).
Instead, we apply a recent important theorem of Baxter-Chacon [1]:
any sequence of stopping times T (chosen here so that
¢[E(XTn)] "V¢) admits a subsequence, still denoted t, which
converges to a randomized stopping time vy in the Baxter-Chacon

topology. We show that under proper boundedness assumptions this
implies that EX_ = Exy, hence vy is optimal. To "derandomize',
n

we take a closer look at the set of randomized stopping times, noting
that the non-random stopping times are exactly its extreme points.
As an application, one proves the existence of a non-random optimal
stopping time.

Section 1 discusses the Baxter-Chacon topology and extreme points.
In Section 2 we prove a general theorem about the existence of opti-
mal stopping times, and apply it. Section 3 considers the case when
E( HY1]|log+ [I¥1 ]| ) = «. A discussion of the continuous parameter

case - the original setting of the Baxter-Chacon article - is given
in Section 4.

1. Compactness and extreme points of stopping times. The

following notation will be used throughout the paper. R 1is the set

of real numbers; W = {1,2,3,...} has its discrete topology;
N = {1,2,3,...,*} is the one-point compactification of WN; B is
the o-algebra of Borel subsets of [0,1]; A 1is Lebesgue measure

on B. If S is a topological space, then ((S) denotes the set
of bounded continuous functions £: S > R.

Let (Q,F,P) be a probability space, and let (Fn)nelN be an
increasing sequence of sub-c-algebras of Ff. By convention, we will

write F_ for the o-algebra generated by v :=1Fn. A sequence

(Xn)n elN
(Fn) iff Xn is Fn-measurable for all n. This situation frequently

of random variables is said to be adapted to the sequence

occurs in the reverse order: a sequence (Xn) of random variables

nelN
is known, and Fn is defined to be the o-algebra generated by

Xl,...,Xn. In this case, we call (Fn) the natural o¢-algebras for
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(Xn). Note that F_ 1is countably generated in this case.

A stopping time of (F,) is a function o: Q - T such that
{w: o(w) = n}e F, for all n e N. We will write I or Z((Fn)nelN)
for the set of all stopping times.

We will often extend the probability space (Q,F,P) to a larger
one, namely (9 x [0,1],F x B,P x ). A random variable X: Q@ - R
gorresponds to a random variable i: Q x [0,1] R defined by
X(w,v) = X(w); normally we will write X for both cases. The
notation E for expectation will be used both for ... dP and
for [[... dPdA. A randomized stopping time for (f ) is simply

a stopping time for the sequence (Fn x B). To every randomized
stopping time v: @ x [0,1] - N there corresponds a unique increasing

rearrangement ¥: Q@ x [0,1] + X such that
Mv: y(w,v) = n} = a{v: ¥(w,v) = n}

for all w e @, n <N, and such that for each ¢ € @, the function
¥(w,+) 1is increasing and left-continuous. In most situations occur-
ing in this paper, rearrangement with respect to the variable v will

make no difference. For example, if <Xn) is adapted to

neN
(Fn)n.eiﬁi and vy, ¥y are as above, then E(Xy) = E(Xy). We will
write T or F((Fn)n eiN) for the set of all randomized stopping
times, increasing and left-continuous in the second variable.

Baxter and Chacon [l] have defined a useful topology for the set
I of randomized stopping times. For completeness, that definition
is repeated here for discrete time. (See Section 4, below, for a
brief discussion of the continuous time case.) For y T, the

w-distribution of vy 1is defined by

M(w,K) = a{v: v(w,v) € K}

for weq, KcW . Then M has the following properties:

(a) For fixed e, the function M(w,-) 1is a probability
measure on N :

(b) For fixed n N, the function M(.,{n}) is Fn—measurable.

We will write T©' for the set of all functions M satisfying (a)

and (b). (In order to define an element M of T', it suffices to
define M(w,{n}) for n €N and add for other sets K €N, or to
define M(y,{l,...,n}) for n €N and subtract to obtain M(w,{n}).)

If M e ' is given, we may conversely define a randomized
stopping time vy T by
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Y(w,v) = inf{n e N: M(w,{1,...,n}) > v}.

Thus T and T' are in one-to-one correspondence. Notice that

M € I'" corresponds to a nonrandomized stopping time ¢ if and only
if

1, if o(w) = n
0, if o(w) # n.

M(w, {n}) =

The Baxter-Chacon topology is the coarsest topology on TI' such
that, for all neN and all Y Ll(F), the map M + [Y(w)M(w, {n})P(dw)
is continuous. Thus, for sequences, this means that Mk converges to
M in the Baxter-Chacon topology iff

iim Y@My (v, (nDP(dw) =  [Y()M(w, (n})P(dw)

for all neN and all Y e Ll(F). We define the Baxter-Chacon
topology on T via the bijection above. We write Ve > v(BC) 1iff

if: E(Yl3(y)) = E(Yl 4 (y)) for all neN and all Y € ey

(Of course, this is the topology induced on the set of randomized
stopping times by a weak-star topology.) The usefulness of this top-
ology is due largely to the following result of Baxter and Chacon [1].
For an early very general compactness argument see LeCam [16].

1.1. THEOREM. The set T of randomized stopping times is compact
in the Baxter-Chacon topology. If F 1is countably generated, then
I' is metrizable, and therefore sequentially compact.

The set of all functions M such that

(a) For each u € @, M(w,*) is a signed measure on W;

(b) For each n e N, M{(.,{n}) is Fn—measurable;

(¢) There is a constant C such that |[M(w,k)| <C a.s. for
all K cWN;

is a topological vector space under the Baxter-Chacon topology. The
set I'' 1is a compact convex subset of it. The extreme points of T
are exactly the -distributions of the nonrandomized stopping times.
Each element of T' can be represented as a continuous average of
these extreme points. This can be proved using Choquet's theorem,
but it can also be deduced from the equation

1
(1.2) M=[ M

0 Yo(-,V)dV g
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where M ¢ I' corresponds to Yg € r, and for each v € [0,1], we
write MY () for the wdistribution of the nonrandomized stopping
0 3

time w » Yo(m,v) . Equation (1.2) can be interpreted to mean

1
(1.3) M(w,K) = fo M )(w,K)dV

'Yo(,':v

for all w e @, K¢ N. It follows from this that

1
(1.4) BX, ) = fo EX, (. Jdv

for any adapted sequence (Xn) for which the right-hand side

nelN
exists.
This equation can be used to "derandomize' optimal stopping times.

1.5. PROPOSITION. Let (X))

2n e W be adapted to (F.)
Then

n‘ne N’

sup E(X) = sup E(X),
Yerl Y secx

and if one of the suprema is achieved and finite, so is the other.

Proof. Write

V=sup EX).
g
ng

Assume that V < «. Suppose there exists Yo € I with E(XY ) > V.
Then from (1.4), we have 0

1
VSE® ) =] EE (L ))4Y

Therefore E(XY (- v)) =V for almost all v «[0,1], and hence for
O 3
at least one V. But then we have E(XY ) <V for all Yo € r, and
0 =

if sup E(X

is achieved, so is sup E(Xo)‘
YeTl

)
Y a e &

1.6. COROLLARY. If there exists Yo € r, finite a.s., with

E(X_ ) =sup EX) =V,
Y yer Y

then there also exists og € I, finite a.s., with

E(XUO) = V.
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Proof. Represent Yo as in (1.2). Then, for almost all ,
0 = Alv: Yo(w,v) = o}, So there exists v with both

P{YO("V) < wl=1 and E(XYO(',V)) = V.

For a derandomization in the vector-valued case, we use Jensen's
inequality in a Banach space B.

1.7. THEOREM. Let (Xn)neﬁ
integrable random variables in a Banach space B, and let ¢: B =R

be an adapted sequence of Bochner
be continuous and convex. Then

sup_ ¢(E(X))) = sup $(EX)),

Yy €T Y o €L
and if one of the suprema is achieved and finite, so is the other.
If this supremum is achieved by Yge T which is finite a.s., then
it is also achieved by oge L which is finite a.s.

Proof. Write

V, =sup $EEX)).
¢0'62 o

Assume V < «. Suppose vy e T and ¢(_ECXY ) >V Represent
o <

¢ -

Yg as in (1.4). Then
1
Vy < 0E®, D) = o(f EX (. 5w
1
< $ER (e
1
< J'O Vd)dv = Vq),

so ¢(EX (. V))) =V,  for almost all v. The rest of the proof
Yo(+» ¢

is as before.

2. Optimal stopping time: general case. In this section we
study the optimization of ¢(EXT), where (Xn) is a Banach-valued
process, and ¢ 1is a real-valued continuous convex function defined
on the Banach space (e.g., the norm). Also conditions are given for

the convergence of Banach-valued stopped processes XY » when y,
n
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are randomized stopping times converging in the Baxter-Chacon topology.
B will denote a Banach space with norm || || .

2.1. LEMMA. Let (yn) be a sequence of randomized stopping
times that converges to a randomized stopping time vy in the Baxter-
Chacon topology. Then for every Bochner integrable random variable Y,
and for every function f continuous on W, E[lAYf(yn)] converges
strongly to E[lAYf(y)].

Proof. Fix f « ¢(N), and first suppose that Y is a step-

function, i.e., Y = Z xilAi, where X; € B, and Ai € F,

1<i<k
i=1,...,k. Then for any n <« I, we have
E YE(r) = x.E[1, £(n)].
1<]Z.<k iTTAy

By the definition of the Baxter-Chacon topology on I, the
sequence E[lA.f(Yn)] converges to E[lA f(y)] for every i =1,....k,
i i

and hence the announced strong convergence holds for step-functions.
Now let Y be a general Bochner integrable random variable. Fix

€ >0, and let Z be a step-function such that E ||Y - Z|| < ¢
Then for every n e I' we have

HE(YE()] - E[zE))|] < el|f]], -
Now apply this inequality with 1y = Yn' and n = vy .

Let (Xn, n > 1) and X be B-valued random variables, and let
A € F. We say that X 6 converges to X in distribution on A,
in symbols X, =X on A, if for every continuous and bounded real-
valued function g defined on B, E[lAg(Xn)] converges to
E[lAg(X)]. The following proposition gives conditions for the
convergence of the stopped process XYn to XY if Yy v(BC) .

2.2. THEOREM. Let (yn) be a sequence of randomized stopping
times that converges to vy « I' in the Baxter-Chacon topology. Let
(B, || 11> be a Banach space, and let (X neN) be a B-valued
Bochner integrable adapted process, such that Xn converges strongly
almost surely to Xm as n » . Then for every set A e F, X

n
converges in distribution to X on A. If furthermore E(sup HXA|)<m,
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then for every set A e F, E(_lAXY ) converges strongly to E(lAXY).
n

Proof. We prove the second part of the theorem first. Suppose
that E(sup HXn]]) < o Fix K > 1; for every set A € F and for
every n,

)y - EQ1

HE(leYn) - E(LX) ) < JEQ an Xl

An {Yan}XYn

UG, oy ski¥e) = BQa gy s k¥ |l
+ B[, 4 {K<Yn<“}(XYn_ XD+ IEIL, 4 {K<Y<m}(xy— X )1 -
Hence
HE(leYn) - E(leY)]; 5.1<E<KHE{1AX11{1}(Yn)] = E[1,X:1 50 (N ]

OB X e, g O] - BIE L g o T

+ 2E(1, o &y - X1
<i<ew

Since Xn converges strongly to X, a.s. on A, the sequence

1, sup ||¥, - X_ ||, dominated by sup ||X_|| , converges to zerc a.s.

A glice + ® n

as K » ». Fix ¢ > 0, and choose K such that E[lA sup [[Xi-nX i1 < e.
K<ico “

Then applying Lemma 2.1 with Y = lAXi, f = l{i}’ and with Y - lAXm’

f = l[K+l,w]’ one can choose ng such that for every i =1,...,K,

one has

sup {[E{L,X,1,...(y )] - E(L,X.1 .. (v)1f < /K,
n>ny ATiT{i} 'n ATIT LY -
and also

sup [E(1,X 1opay o1l = EILE Lipyy OO < e
n_>—n0

Then n > o, implies HE(lAXYn) - E(lAXy)ll < 4e, which proves

the second statement in the proposition.

We now prove the first assertion of the theorem. Let g be a
continuous bounded function from B to R, and let Zn= g(Xn),
ne€ N. The real-valued process (Zn) clearly satisfied the two
assumptions Z_  + Z, a.s., and E(suplznl) < ®», Hence by the first
argument, for every A € F, E[lAg(XY Y] converges to E[lAg(Xy)].

This completes the proof. u
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An example of a process (Xn) satisfying the hypotheses of
Theorem 2.2 is an Li-bounded martingale with values in a Banach space
B with the Radon-Nikodym Property.

2.3. COROLLARY. Let (B,|| ||) be a Banach space, let ¢: B »R
be a continuous function. Let (Xn: n ¢ N) be a B-valued adapted
process such that E(sup [[X ||) < =, and such that X~ converges
strongly almost surely to X Then there exists a randomized stop-
ping time <y such that

¢(EXY) = V¢ = sup{¢(EXn): nerl} < =,
Proof. Since only countably many Bochner integrable random
variables are involved, we may assume that F 1is countably generated.
Choose a sequence Yn in T such that 1lim¢(EX ) = V,. Since the
set T 1is sequentially compact for the Baxter-Chgcon topology, there
exists a subsequence (ynk) of (yn), and a y ¢ ' such that

Yo, 7 y(BC), By Proposition 2.2, the sequence EX converges
k o
k
strongly to EX_ ; the continuity of ¢ implies that ¢(_EXY ) -
EX =V < o, n
o(EX,) o

Using the results in Section 1, we obtain the existence of non-
randomized optimal stopping times if ¢ is convex.

2.4, THEOREM. Let (B,|| ||) be a Banach space and let ¢: B - R
D €WN) be a B-valued
process such that E(sup HXn||) <=, and X  converges strongly a.s.

be a convex continuous function. Let (X

to X as n » ». Then there exists a nonrandomized stopping time
¢ €I such that

(2.5) ¢(EX0) = V¢= sup{¢(EXT): T €1}

= Sup{cb(Exy): ye T} < = .

Proof. Since the function ¢ is continuous, Corollary 2.3
insures the existence of an optimal randomized stopping time yeT.
By Theorem 1.7, the convexity of ¢ insures that sup{¢(EXT): T e} =
sup{¢(EXY): Yy € T}, and that there exists a nonrandomized stopping
time ¢ e I such that V¢ = ¢(EX0).

We now give examples of processes (Xn: n e N) and functions ¢
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that satisfy the assumptions of Theorem 2.4. Recall that if
(Yn: ne N) is a stationary B-valued process with E Y71l < «, then
by E. Mourier's ergodic theorem [20], the Cesaro averages

x =1

——— ) Y; converge strongly a.s. to a random variable X

i<n

with EX_ = EY;.
2.6. THEOREM. Let (B,|| ||) be a Banach space, and let (¥,

be a B-valued stationary stochastic process with E( ||Y1||10g+ Y1) <=

For every ne€ N, set X_ = 1 } Y., and let X be the almost
n n,;i i ®
sure limit of X,- Then given afnly continuous convex function

¢: B +R, there exists a nonrandomized stopping time ¢« r such that
2.7) ¢(Exg) = V¢ = sup{¢(EXT): T & L} < o,

Proof. By Wiener's dominated ergodic theorem applied to the real-
valued stationary process |[|Y ||, we have sup ||X || < sup % ) HY; [l € 1y
- l<i<n

(see e.g. [10], p. 678). Now apply Mourier's theorem and Theorem 2.4.

2.8. COROLLARY. Let (Yn, n € N), and (Xn: ne N) be ds in
Theorem 2.6. Given any convex set C < B, and for every x € B, let
¢(x) denote the distance between x and C. Then there exists an
optimal stopping time for ¢, i.e., an element o ¢ & such that (2.7)
is satisfied for 4.

Proof. It suffices to notice that the distance between x and a
convex set is a continuous, convex, real-valued function.

The corollary shows in particular that there exists an optimal
stopping time for the norm of the Cesaro averages X, of a stationary,
L Log L-bounded process taking values in ]Rz. The following example
implies that there does not exist a stopping time ¢ « 5 optimal for
the Xn; i.e., such that EXU = sup{EXT: T € I}, even in the case
where the Yi's are independent, identically distributed, positive
and bounded. (The supremum is to be taken in the coordinate-wise
ordering of ZRZ.) This example also shows that the stopping times
o such that HEXOII = Vll I depend on the choice of the norm |} ||,
and that given a norm, the optimal stopping times for HEXGII and
for E HX I need not be the same.
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2.9. Example. Let (An) be a sequence of independent events
each of probability 1/2. TFor every n NN, set

Y = (l,O)IAn+ (0,1)1A§, n Lo
and let X = (7,7) be the a.s. limit of X - For every randomized
stopping time vy ¢ I', and for every (w,v) € 9 x [0,1],
XY(w,v) = (aY(w,v),by(w,v)), with ay(w,v) + by(w,v) = 1. Hence if
EXY = (XY’yY)’ then xY + yY = 1. However, let o1 [resp., oyl
be the a.s. finite stopping time defined by o1(w) = infin: ¢ e A}
[resp., oz(w) = inf{n: uwe Ag}]. Then

1
X 1, =1 + 1 +...+ =1 +..., and
1 1 2 A%ha P oaShn... 488 [naA
1772 1 N p-1"%p

EX°1 ) (Xcl’yol) with x01 - igl %(%)i > %' A similar computation

= 1 5
shows that EX02 (xoz,ycz) with y02 > 5 Hence

sup{EXO: 0 e, o finite a.s.} > (g,g), and this supremum cannot

be achieved by a randomized stopping time. Now set ||(x,y) I, = Ixl+ ly]
and H(x,y)[L = sup(|x]|,|y|). Then for i =1, o, and for every

vy €T, HEXY i < E(]]XT||i) < 1. By the argument given above, for
every stopping time 1 < %, ||EXT||1 = EHXT Hl = 1. Clearly

Efixqll, =1 [IEXl, = %, and if o, is the stopping time defined
above then HEX01||m > %. Hence ¢ = 1 1is optimal for Iy

but not for | ”m,

The example shows that for a Banach lattice B there need not
exist an optimal stopping time. However, for a large class of lattices

there exists a maximal stopping time for B+.

2.10. COROLLARY. Let B be a Banach lattice such that for any
X,y € B+, x <y implies ||x|| < [|ly|| (Lp—spaces have this property
if 1 <P < ). Then under the conditions of Theorem 2.4, and assuming
also the process positive, there exists a maximal stopping time o;
i.e., o € I such that for every 1 < 3, the inequality EX0 < EXT
fails.

Proof. Set ¢(x) = ||x||, and let ¢ be an optimal stopping time
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for ¢, i.e., suppose that (2.5) holds. For any 1 € I, the inequality
EX_ < EX_ implies ]|EX0|[ < |[EX_|| , which is a contradiction.
Hence ¢ 1is maximal.

We show that if the process (Xn) takes values in ]RP, one can
weaken the assumption that X converges a.s. and obtain a result
similar to Proposition 2.2, The case of RP can be also reduced to
the case of ]R1
proof given below is more in the spirit of the present paper.

=R by consideration of linear functionals, but the

2.11. PROPOSITION. Let (yn) be a sequence of randomized
stopping times that converges to a randomized stopping time <y in the
Baxter-Chacon topology. Let (Xn: n € N) be a stochastic process
taking values in ]Rp, and let A < F. Suppose that

(i) szI:Lm’ Xn on A, and 1 is integrable,

A
(ii) sup(_lAX-:;) is integrable,

PPy - p
(iii) sup E(_lAXn) € RY,
(iv) E(1,XD) < RP.
Then E(ley) > lim E(lAXYn).

Proof. The sequences sup (,lAXi) decreases to 1,Iim X as

: A n’
k<i<ew
k + », and is bounded from above by lAsup X: € Ll' and from below by

(lAIim Xn)-, which is an integrable function by assumption (iii).
Hence applying the dominated convergence theorem, we obtain

E(1,Tim X)) = 1lim E[1 sup X.]. For every x €]Rp, set
& n k Apiice

Izl = sup{]le: l<j<p}, and let u= (1,...,1) be the unit

vector of RP. Fix ¢ > 0; choose o > 0 such that P x A(B) < a
implies E[l, |3 ||X;||] <e, and E[1l, 1y [[X Il < e. Choose

Ke N such that P x }{K < y < =} < o, and such that

E[(l, sup X;] < E[L,Tim X_] + eu.
A Reicw = AT Tm
Then
E(_lAXY) = E(]'A n {'Y_§K}XY) + E(_lA n{K<Y<m})(-¥) + E(lA ﬁ{Y=w}Xw)
_2_ E(lA n{YiK}XY) - gu + E(‘lAﬁ {K<Y<m}xm) - egu + E(].A n {Y=no}xm) .
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Applying Lemma 2.1 with Y =1 Xi' f=1 and with Y = 1,X_,

- A {i}’ A
f = 1[K+1,m]’ we obtain
E'(]‘AXY) > 111’:1m E(lAn{Y <K} Yo Y + lim E(lAn{Yn>K}Xw) - 2¢cu
> I_ifﬁ{E(lA A {Y <K}X ) + E(lA A {Yn=°°}XYn)
+ E(1 Tim Xk)} -2¢cu

AN {K<Yn<m}

> Tim {E(1,1

2 Alty <1y (y ==r%y )

+ EQ1

AN {K<Yn<w} KSUP Xi)} - 3eu

<i<e

> Tim E(leYn) - 3eu.

2.12, THEOREM. Let (Xn: n ¢N) be a stochastlc process

taking values in RP, and such that E(sup |(X |) < o, and
n i—

X, 2> Tim Xn. Let ¢ be an increasing continuous function defined
on the closed convex hull of y {Xn(Q): n ¢ N). Then there exists an
optimal randomized stopping time vy ¢ I' such that

E = = EX ): .
¢ ( XY) V(,> sup {1 (] r]) nerll
If in addition ¢ 1is assumed to be convex, then the optimal time
can be chosen non-random, i.e., there exists o € £ such that

¢(EXG) = V¢ = sup{¢(EXT): T i} = sup{¢(EXY): Yy e T}.

Proof. Let (yn) be a sequence in T such that

V, = lim ¢(EX_ ) =sup{¢(EX ): n er}. Let (y_. ) Dbe a subsequence
[ Yn n N,
of (yn) that converges to an element vy ¢ I' in the Baxter-Chacon

topology. Then by Proposition 2.11, E(XY) > lim E(’XY ). The
n

monotonicity and continuity of ¢ implies that

¢(EX)>¢( EX)> Tim ¢(EX_ ) =V .
Yn ¢
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If ¢ 1is convex, then Theorem 1.7 shows that there also exists an
optimal non-random stopping time ¢ ¢« I.

Finally we show that there exists a finite optimal stopping time

for the process X = ||l I Y.||, where Y. is a Banach-valued
n n L i i
l<i<n

independent identically distributed sequence and Yl e Lp’ p >3,
thus generalizing the result of B. Davis (8] to Banach-valued processes.
For this the condition E( HYllllog+ [I¥;11) < «» is not sufficient
even in the real-valued case, as shown by M. Klass [14].

2.13. THEOREM. Let B be a Banach space, and let ¢: B +R be
a continuous function such that ¢(x + y) < ¢(x) + ¢(y), and
$(ox) = a¢(x) for every o > 0, and for every x,y « B. Let
(Y,: neN) be an independent identically distributed B-valued
sequence of random variables with mean 0, and with E HYIIIP < ™

for some p > 1. For every n > 1 let X" a ign Y., and let X_ = 0.
Then every stopping time o € & such that ¢[EXO] = V¢ = sup{¢(EXT):1'€Z}
satisfies P(o < =) = 1. Hence there exists an a.s. finite stopping
time o € I such that ¢(EX0) = V¢.

Proof. The assumptions made on ¢ clearly imply the convexity
of ¢. Hence by Theorem 2.6 there exists o € £ such that
¢(EXU) = V¢. It suffices to show that any such o is finite a.s.
Let o € I satisfy ¢(EXU) = V¢, and let x = EXO. By the Hahn-
Banach theorem, there exists a linear functional x* on B such that
x*(x) = ¢(x), and -¢(-y) < x%(y) < ¢(y) for every y €B. The
continuity of ¢ clearly implies t-e continuity of x*. TFor every
T € L, we have

E[x*(XT)] = x*[EXT] < ¢[EXT] < V¢.

Since E[x*(XG)] = x*(x) = ¢(x) = V,, the stopping time o is
optimal for the real-valued process (x*(xn)). Set Zn = x*(Yn);
since x* is continuous, and E( HYl ”P) < =, we have E[anp < o,
Now x*(Xn) are Cesaro averages of the real-valued process Z,-
Since B. Davis [8] has proved that an optimal stopping time ¢ for
such a process (x*(xn)) is finite a.s., the proof is concluded.
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3. Stopping rules under a weak independence assumption. In this

section we introduce a condition (I) weaker than independence, and
show that under (I) a stationary Banach-valued process (Yn) is
of class L Log L if and only if for every stopping time o

[E

B ey ™5

< o, A similar characterization is obtained in terms

of the Cesaro averages.
Let (A)) n>] Pe a family of o-algebras; typically A, is
generated by a single random variable Y,. Let f = o(C U Ai)'
i<n
We say that (An) [or (Fn)] satisfies the condition (I) if there
exists a strictly increasing sequence of integers (Nk)k>1’ and a

constant o with 0 < o < 1, such that

e ok

(3.1) im —I{— < o,

(3.2) Vk > 1, YA « Fy. » vC < Ay ,
- k k+1

[P(A N C) - PAYP(CY| < oP(A)P(C).

The condition (I) is a weakening of the (*)-mixing condition
introduced by Blum-Hanson-Koopmams [4]; see also [23], p. 140. We
refer to [4] for examples. In the case when the A, are atomic and
Nk = k, the condition (I) coincides with the Vitali-Chow condition
(see e.g. Neveu [21], p. 73).

If (An) satisfied the condition (I) , then for every Banach
space (B, || ||> we have

(3.3) Vk > 2, v elB(r, ), VD€ 4
1 Nk—l Nk
| EQL X - POIEX) || < oP(DIE ||X||
and
B
(3.4) Yk > 2, VA € F , VX € L7 (Ag )
> N1 14y,

IEQL,X) - PAYEX) || < oP(AE [IX]| .

We only show the assertion 3.3. Let X be an N -measurable
k
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step function, say X = ] x.1, , with x., € B, A, ¢ F ,
i T A4 i 1T Ny

i=1,...,n, and let D ¢ Ay, - Then
k

IE(1X) - P(DIEX) ||

A

(L lIxgll PG 0 D) - PAPO)

o ] llx; | P(A)P(D) = oP(DIE ||X]| .
o

IA
=Y

Fix ¢ > 0, let X € L?(FN ) and let Z be an FN -measurable
k-1 k-1

step function with E ||[X - Z]| < ¢. Then
|E(1gX) - P(DIEX|| < 2¢ + [[E(1pZ) - P(D)EZ|]

< 2¢ + aP(D)E ||Z]| < 4e + oP(D)E ||X]| .

A process (Y_) is said to satisfy condition (I) if the

n‘n>l
family A, = o(Y,) does.
We prove next our main result on condition (I). If the Yn
are real-valued, independent, and identically distributed, the
implications (ii) = (i) and (iii) = (i) are due to Burkholder [5];
the implications (iv) = (i) and (v) = (i) to B. Davis [7] and
independently to McCabe-Shepp [181].

3.5. THEOREM. Let B be a Banach space, and let (_Yn)n>1 be
a stationary B-valued Bochner integrable process. Suppose that (Yn)
satisfies the condition (I) for an increasing sequence of integers
(Nk). Then the following conditions are equivalent:

(1) ECIY I Logh Y Iy < =
Y
(i1) E(sup [I71) < =
.o 1
E = Y. L
(iidi) sup (= ign Il l‘|) H; H,
T

(iv) Vo €2, E(l{gey—o) <

1
(v Yo € £, E(1 1= Y ) <
) L yemlls 4 <o x|

Proof. By the pointwise ergodic theorem, the sequence % 3 HYiH
Y i<n
converges a.s., and hence H;?H converges a.s. to zero. By Wiener's

dominated ergodic theorem applied to the process HYnll, (i) = (iii)
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(see e.g. (101, p. 678). Since

Yn 1
sl = Nz I ¥ - Y

i< i<n-1

Bl

il

1 1

= Yo+ 5 DR 3|
n ign * n-I i<n-1 *

(iii) implies (ii). Obviously (ii) = (iv), and (iii) = (v). We

only prove (iv) = (i), and (v) = (i). Given o with O <a <1, let

(N) be the strictly increasing sequence such that A = o(¥))

satisfied the conditions (3.1) and (3.2).

Proof of (iv) = (i). Fix ¢ > 0; applying the pointwise ergodic
theorem, choose N, > 1 and a set A € F_ such that for every
n > N., we have HYn|| <n/2 on A. By assumption (3.1), we also
may assume that there exists a constant ¢ such that Nk < ck for

every k. Define a stopping time o €@ by

o = inf{N, : N, > N, ”YNkllZ N3,
with the convention inf @ = +=. Clearly o = +» on A. Given a
process (Xn), and a stopping time 1t ¢ I, we write EXT for

E(L XT). By assumption (iv),

{1<>}

TRLEL g A TP
o i M o) Mk

The set {o>N;} = N |ty | <N.,} is F measurable.
=R icick-l I Ny 3 N1

Applying the relation (3.4) with the set A = {o > N} and

X =1, 1Y 1l >N} HYNk[|, we obtain
k
1
© > (L-a) g P(c > NDE(1 1Yy 11
kgi Mo = ROy 2N TN

1
> (l_a)kZi N'—k‘P(A)E(.l{ HY]_HiNk} HY]_” ).

Since o <1 and P(A) > 0, we have for fixed i



53

1 ® 1
= LN Yy 11 ap = f x( )P (dx),
ki Mk {HYl{lsz} 1 fo Niilgkf_x M
where P IRl denotes the distribution of [|¥;[| . We have that
1

ck < x implies Nk < x. Hence if x ->—Ni’ we have

%
) L 1,1 J'[E]ﬂ dx
Nif_Nkix Nk i<k<x/c ck —¢ i x

v

f_%[Log x - Log ci].
This clearly implies that E|[ ||Y1|| Log+ [|Y1||] < @,

Proof of (v) = (i). Let o be the stopping time defined in the

proof above. Then

Y Il
YNkH) 3E(J7°—) - E(%H ) Y 11

1
k<O Nppp20
Wyl
s

1
ECGH g

1
> E( ) - B¢ ] IIYNkII )

Nyy120

Y
LA

By the proof of (iv) = (1), it suffices to show that E(

and hence that E(: ] ||¥g ||) < = We have
j+150

§+12° j k>i 3

1
E(= L
o e L Ry L 1D

1
N

A

kii

et

EC ||Y 1 ).
1ij§k-1 . Nj” Yy 2Ny

Applying the relation (3.3) with X = [[YN || , which is measurable with
J

respect to

FN , and with D = { HYNkHiNk} e ANk, we have

k-1

1 1
EG Yo 1) < (T+a) L E
o Nk_gio Py 1) < (e kgi Me 1 jgk-l

A

HYNJ, I B¢ HYNkIIZNk>

P A

(L+a)E ||Yq || J PCHY ][>N)
k>i
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< W) E (Y17 < =

This completes the proof of the theorem.

The theorem of Davis [7] and McCabe-Shepp [18], and the theorem
of Dvoretzky (see e.g.[6], p. 86) were extended to tactics on
directed sets, in particular to stopping times in W x N, by
Krengel-Sucheston [15], by application of their linear embedding
theorem. Since, as noted in [16], the linear embedding preserves
also vector-valued integrals, the results of the present paper
concerning averages of vector-valued independent identically distri-
buted random variables extend similarly to directed sets.

4. Continuous parameter. In this section we extend some results

of Sections 1 and 2 to continuous-parameter processes. Let (@,F,P)
be a probability space, and let (Ft: t ¢ [0,=]) be an increasing
right-continuous family of sub-c-algebras of F such that F,
contains the null sets. A stopping time of (Ft) is a map

o: @ » [0,»] such that {w: o(w) < t} € F_ for every t < [0,=];
we again write £ for the set of all stopping times. A randomized
stopping time for (Ft) is amap vy: @ x [0,1] + [0,»] which is a
stopping time for (Ft x B); we assume that vy 1s non-decreasing
and left-continuous in the second variable. We will write T for
the set of randomized stopping times. For every vy < I', the
w-distribution of vy is defined by

M(w, [0,t]) = sup{v: y(w,v) < t}

for weq, t €[0,o}]. Then M has the following properties:
(a) For fixed < @, the function M(w,+) defines a
probability measure on R.
(b) For fixed t e [0,«], the function M(.,[0,t]) is
Ft-measurable.
We will write T©' for the set of all functions M satisfying (a)
and (b). There is a one-to-one correspondence between T and T'
(see [1] for details). As in the discrete case, M « I'' corresponds
to a nonrandomized stopping time ¢ if and only if M(w,[0,t]) =
l{0<t}(w). The Baxter-Chacon topology on T 1is the coarsest
topology such that for every Y € L (F), for every f  C([0,«]),
the map vy » [Y(w)f[y(w,v)1P(dw)A(dv) is continuous. Baxter and



55

Chacon have shown that the set T is compact for this topology
([1] Theorem 1.5).
The following theorem is analogous to a result used in Section 1.

4.1. THEOREM. The extreme points of T' are exactly the
w-distributions of the nonrandomized stopping times.

In the sequel we will consider an adapted Banach-valued process
(X, F.t € [0,°]) such that

(4.2) E(sup [[X,]]) < =
4.3) Xt is right-continuous,
4.4) Yo, € L, o 20 implies Xc > X0 a.s.,

n

For real-valued processes (X ), condition (4.4) is equivalent
with quasi-left-continuity, and the property X = llm X, a.s.
The following theorem is an analog of (1. 4), above

4.5. THEOREM. Let y €T be a randomized stopping time, If
(X.) 1is an adapted process satisfying the conditions (4.2) and (4.3),
then 1
E = B

(XY) IO E XY(”V)dv

Proof. As in (1.2), we have

1

M= IO MY(.’V)dv

Y

Then for every A € F, for every t & [0,«].

1
JLaM, (o 10, EDP() = [ [LIM, (| 4 (0, [0, P ()

LA v: y(w,v) < £IP(dw) |

Hence MY(w,[O,t]) = Mv:y(w,v) < t} a.s. For every j > 1, let
v[j] be the smallest element k/2J such that vy < k/2J Then for
every j > 1,
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~r
(]

IXZ_J- ()M, [O,Z_j])P(dm)

+ 7 X (oM@, 1 &-1)27, k27 )P (dw)
k>2 k27J

Kyl vt < 273 1P (dw)

+ 7 X DAV k1273 < y(ov) < k273 1P(dw)
k>2 k27J -

= E(XY Ydv.

(-, 131

Letting Jj - =, and using the properties (4.2) and (4.3), we
obtain
E(Xy) = lim EX Ydv

1
m ERy gy T b EG

VY]

1
IO E(XY(_’V))dv.

The following theorem allows us to '"derandomize' continuous-
parameter optimal stopping times. The proof, similar to the proof of
Theorem 1.7, is omitted.

4.6. THEOREM. Let B be a Banach space, let ¢: B +R be a
continuous and convex function. Let (Xt) be a B-valued adapted
process with the properties (4.2) and (4.3). Then

V¢ = sup ¢[E(X_ )] = sup ¢[E(X0)],
Yy T Y o et

and if one of these suprema is achieved and finite, so is the other
one. If the supremum is achieved by Yo €T which is finite a.s.,
then it is also achieved by og €L which is finite a.s.

We now study the convergence of the stopped sequence XY , when
n
Yo 7Y (BC) and (Xt) is an adapted process with the Properties

(4.2) - (4.4).
The following theorem is a generalization of Corollary 1.15 in (1],
and the proof is similar.

4.7. THEOREM. Let B be a Banach space, let (Xt: t € [0,»]) be
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a B-valued right-continuous, quasi-left continuous process such that
E(sup IXc 1) < = Let Yn DPe a sequence of randomized stopping times
such that Y, converges to a randomized stopping time vy in the

Baxter-Chacon topology. Suppose that 1lim sup P x )\(yn > a) = 0.
a»e n

Then for every A < F, E(lAXYn) converges to E(]‘AXY)'
Proof. The proof of this theorem depends on several lemmas
stated below.

4.8. LEMMA. Let (yn) be a sequence of randomized stopping times
taking values in a finite set K < [0,»], and converging (BC) to a
randomized stopping time +y. Suppose that the random variables
(Xt’ t € K) are Bochner integrable. Then

E(leYn) > E(leY), AeF.

Proof. The lemma is first proved for step functions (Xt: t € K).
The proof is similar to the one in [1], Lemma 4.1.

For every y €T, and every j > 1, let vy[j] be the jth
dyadic approximation of y from above, i.e., y[jl(w,v) =
inf{k/29; k/23 > y(u,v)} (with the convention inf @ = +e).

The following lemma is similar to Theorem 1.8 [1], and the proof
is omitted.

4.9. LEMMA., Let Y, € I converge (BC) to y e I, and satisfy

1lim sup P x )\{yn > a} = 0. Let B be a Banach space, and let (Xt)
aro n
be a B-valued right-continuous process such that E(sup ||Xt 1) < .

Suppose that for every A € F
l;:.m E(IAXYn[j]) = E(lAXYn) uniformly in n.

Then for every A € F, E(1,X = lim E(1,X .
y (LX) X, )

The following lemma is similar to Lemma 5.1 [1]; again the proof
is omitted.

4.10. LEMMA. Let (Xt) be a Banach valued process such that
E(sup ||X.|| ) < ». Suppose that for every e > 0, and for every
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sequence (cn) in I such that 1im sup P(un > a) = 0, one has
a+o n
.. =X || > e} =0. Then for every A €F, and for
o,l3] %
every sequence vy, e ' such that Yo * Y (BC), and

lim sup P{ ||X
j m

lim sup P x x(y_ > a) = 0, one has
a+e n n
l:!.m E(lAXY

)y = E(lAX ) uniformly in n.
3 n ¥

n

(j]

Sketch of Proof of Theorem 4.7. Because of Lemmas 4.8-4.10
and the condition E(sup [IX Il ) < =, the proof of the theorem reduces

to the proof of the following: for every ¢ > 0, and for every

sequence (on) in I such that 1im sup P(on > a) = 0, one has

lim sup P( ||X (i1~ X |} » ) = 0. This is proved via the arguments
i n ontd %n

given in Lemma 5.9 and 5.11 in [1], setting f(x,y) = ||x-y|| /Q+ ||x-y]|| ),
and Y(s,t) = sup{f(XS,Xr): s < T < t}.

4.11. COROLLARY. Let (yn) be a sequence of randomized stopping
times such that Y, converges to a randomized stopping time y in
the Baxter-Chacon topology. Let (Xt) be a Banach-valued process with

the properties (4.2)-(4.4). Then for every A € F, E(lAXy) = 1lim E(_].AXY ),
n
and X converges in distribution to XY on A.
n
Proof. Let T: [0,«] » [0,1l] be a continuous bijective and

increasing function. For every s < [0,1], set YS =X -1 and
T ~(s)

For every s > 1, set Y_ = X and Gs = F_. The

6. = F
S

s T-l(s).
proof of the theorem reduces to the proof of the convergence of

E(lAYTan) to E(lAYToy)' The process (YS) clearly satisfied

the assumptions (4.2)-(4.4), and the sequence Toy, is bounded by 1,
so that Theorem 4.7 applies.

We now deduce the following theorem about the existence of an
optimal stopping time for ¢(EX0). It is a continuous parameter
analog of Theorem 2.4.

4.12. THEOREM. Let (B,|| [|> be a Banach space, and let ¢: B - R

be a convex continuous function. Let (X t € [0,»]) be an adapted

£
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process with the properties (4.2)-(4.4). Then there exists a non-
randomized stopping time o « I such that

$(EX ) =V sup{¢(EXT): Te z}

¢

SUP{¢(EXY): Yy € T} < o,

Proof. The theorem is a consequence of Theorem 4.6, and
Corollary 4.11. We refer to the proof of Theorem 2.4 for details.
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