MARTINGALE	THEORY
IN HARMONIC	ANALYSIS
AND BANACH	SPACES
Cleveland	1981
Springer's	LNM 939

ON COMPACTNESS AND OPTIMALITY OF STOPPING TIMES

G. A. Edgar^{*}, A. Millet and L. Sucheston^{**}

Let B be a Banach space with norm || ||. Suppose that we are allowed to view successively as many terms as we please of a sequence of B-valued random variables X_n . We stop viewing at a time n of our choice, and receive payoff X_n . Is there a non-anticipative stopping rule σ which would maximize a continuous convex function ϕ of the expected value of X_n ? We allow stopping rules (= times) τ taking on the value ∞ , and call σ optimal if the ϕ -value

$$V_{\phi} = \sup \phi[E(X_{\tau})]$$

is achieved for σ . One interesting case is $X_n = \frac{1}{n}(Y_1+Y_2...+Y_n)$, where the B-valued process (Y_n) is stationary, and ϕ is the norm || ||, or, more generally, the distance from a fixed convex set in B. We show that if $E(||Y_1||\log^+||Y_1||) < \infty$, then an optimal σ exists. If the Y_n are independent (which implies that X_n is a descending martingale), ϕ is sublinear, and $E(||Y_1||^p) < \infty$ for some p > 1, then σ is finite a.s. If Y_n are real-valued, independent and identically distributed, and $E(|Y_1|\log^+|Y_1|) = \infty$, then there exists a stopping time σ such that $E(|X_{\sigma}|) = \infty$ (B. Davis [7], and B. J. McCabe and L. A. Shepp [18]). This result is generalized here to Banach spaces, and the independence assumption is replaced by a weaker condition (I).

^{*} The research of this author is supported by the National Science Foundation, Grant MCS-8003078.

^{**} The research of this author is supported by the National Science Foundation, Grant MCS-8005395.

Except for the condition (I), our results are known in the realvalued case: see in particular D. Siegmund [24], Chow-Robbins-Siegmund [6], B. Davis [8], and M. Klass [14]. The article of Klass is a complete and self-contained presentation of the subject. It seems however that the real proofs do not extend; in particular, there are no analogues of admissible [6] (= regular [14]) stopping times, or of the Snell stopping time (see Snell [25], or Neveu [21], p.124). Instead, we apply a recent important theorem of Baxter-Chacon [1]: any sequence of stopping times τ_n (chosen here so that $\phi[E(X_{\tau_{n}})] \rightarrow V_{\phi})$ admits a subsequence, still denoted τ_{n} , which converges to a randomized stopping time y in the Baxter-Chacon topology. We show that under proper boundedness assumptions this implies that $\text{EX}_{\tau_n} \xrightarrow{\gamma} \text{EX}_{\gamma}$, hence γ is optimal. To "derandomize", we take a closer look at the set of randomized stopping times, noting that the non-random stopping times are exactly its extreme points. As an application, one proves the existence of a non-random optimal stopping time.

Section 1 discusses the Baxter-Chacon topology and extreme points. In Section 2 we prove a general theorem about the existence of optimal stopping times, and apply it. Section 3 considers the case when $E(||Y_1|| \log^+ ||Y_1||) = \infty$. A discussion of the <u>continuous parameter</u> case - the original setting of the Baxter-Chacon article - is given in Section 4.

1. <u>Compactness and extreme points of stopping times</u>. The following notation will be used throughout the paper. \mathbb{R} is the set of real numbers; $\mathbb{N} = \{1, 2, 3, ...\}$ has its discrete topology; $\overline{\mathbb{N}} = \{1, 2, 3, ..., \infty\}$ is the one-point compactification of \mathbb{N} ; g is the σ -algebra of Borel subsets of [0,1]; λ is Lebesgue measure on B. If S is a topological space, then C(S) denotes the set of bounded continuous functions $f: S \to \mathbb{R}$.

Let (Ω, F, P) be a probability space, and let $(F_n)_{n \in \mathbb{N}}$ be an increasing sequence of sub- σ -algebras of F. By convention, we will write F_{∞} for the σ -algebra generated by $\cup_{n=1}^{\infty} F_n$. A sequence $(X_n)_{n \in \mathbb{N}}$ of random variables is said to be <u>adapted</u> to the sequence (F_n) iff X_n is F_n -measurable for all n. This situation frequently occurs in the reverse order: a sequence $(X_n)_{n \in \mathbb{N}}$ of random variables is known, and F_n is defined to be the σ -algebra generated by X_1, \ldots, X_n . In this case, we call (F_n) the <u>natural</u> σ -algebras for

 $(\textbf{X}_n)\,.$ Note that $\ \textbf{F}_{\infty}$ is countably generated in this case.

A stopping time of (F_n) is a function $\sigma: \Omega \to \overline{\mathbb{N}}$ such that $\{\omega: \sigma(\omega) = n\} \in F_n$ for all $n \in \overline{\mathbb{N}}$. We will write Σ or $\Sigma((F_n)_{n \in \mathbb{N}})$ for the set of all stopping times.

We will often extend the probability space (Ω, F, P) to a larger one, namely $(\Omega \times [0,1], F \times B, P \times \lambda)$. A random variable X: $\Omega \to \mathbb{R}$ corresponds to a random variable X: $\Omega \times [0,1] \to \mathbb{R}$ defined by $\widetilde{X}(\omega, \mathbf{v}) = X(\omega)$; normally we will write X for both cases. The notation E for expectation will be used both for $\int \dots dP$ and for $\iint \dots dPd\lambda$. A <u>randomized stopping</u> time for (F_n) is simply a stopping time for the sequence $(F_n \times B)$. To every randomized stopping time $\gamma: \Omega \times [0,1] \to \overline{\mathbb{N}}$ there corresponds a unique <u>increasing</u> rearrangement $\widetilde{\gamma}: \Omega \times [0,1] \to \overline{\mathbb{N}}$ such that

$$\lambda \{ \mathbf{v} : \gamma(\omega, \mathbf{v}) = \mathbf{n} \} = \lambda \{ \mathbf{v} : \widetilde{\gamma}(\omega, \mathbf{v}) = \mathbf{n} \}$$

for all $\omega \in \Omega$, $n \in \overline{\mathbb{N}}$, and such that for each $\omega \in \Omega$, the function $\tilde{\gamma}(\omega, \cdot)$ is increasing and left-continuous. In most situations occuring in this paper, rearrangement with respect to the variable v will make no difference. For example, if $(X_n)_n \in \overline{\mathbb{N}}$ is adapted to $(\mathcal{F}_n)_n \in \overline{\mathbb{N}}$ and $\gamma, \tilde{\gamma}$ are as above, then $E(X_{\gamma}) = E(X_{\tilde{\gamma}})$. We will write Γ or $\Gamma((\mathcal{F}_n)_n \in \overline{\mathbb{N}})$ for the set of all randomized stopping times, increasing and left-continuous in the second variable.

Baxter and Chacon [1] have defined a useful topology for the set Γ of randomized stopping times. For completeness, that definition is repeated here for discrete time. (See Section 4, below, for a brief discussion of the continuous time case.) For $\gamma \in \Gamma$, the ω -distribution of γ is defined by

$$M(\omega, K) = \lambda \{ v: \gamma(\omega, v) \in K \}$$

for $\omega \in \Omega$, $K \subseteq \overline{\mathbb{N}}$. Then M has the following properties:

(a) For fixed $\omega \in \Omega$, the function $M(\omega, \cdot)$ is a probability measure on $\overline{\mathbf{N}}$:

(b) For fixed $n \in \mathbb{N}$, the function $M(\cdot, \{n\})$ is F_n -measurable.

We will write Γ' for the set of all functions M satisfying (a) and (b). (In order to define an element M of Γ' , it suffices to define $M(\omega, \{n\})$ for $n \in \mathbb{N}$ and add for other sets $K \subseteq \overline{\mathbb{N}}$, or to define $M(\omega, \{1, \ldots, n\})$ for $n \in \mathbb{N}$ and subtract to obtain $M(\omega, \{n\})$.)

If $M \in \Gamma'$ is given, we may conversely define a randomized stopping time $\gamma \in \Gamma$ by

$$\gamma(\omega, \mathbf{v}) = \inf\{\mathbf{n} \in \overline{\mathbb{N}} : \mathbb{M}(\omega, \{1, \ldots, n\}) > \mathbf{v}\}.$$

Thus Γ and Γ' are in one-to-one correspondence. Notice that $M \in \Gamma'$ corresponds to a nonrandomized stopping time σ if and only if

$$M(\omega, \{n\}) = \begin{cases} 1, & \text{if } \sigma(\omega) = n \\ 0, & \text{if } \sigma(\omega) \neq n. \end{cases}$$

The <u>Baxter-Chacon</u> topology is the coarsest topology on Γ' such that, for all $n \in \mathbb{N}$ and all $Y \in L^{1}(F)$, the map $M \to \int Y(\omega)M(\omega, \{n\})P(d\omega)$ is continuous. Thus, for sequences, this means that M_{k} converges to M in the Baxter-Chacon topology iff

$$\lim_{k \to \infty} \int Y(\omega) M_k(\omega, \{n\}) P(d\omega) = \int Y(\omega) M(\omega, \{n\}) P(d\omega)$$

for all $n \in \mathbb{N}$ and all $Y \in L^{1}(F)$. We define the Baxter-Chacon topology on Γ via the bijection above. We write $\gamma_{k} \neq \gamma(BC)$ iff $\lim_{k \to \infty} E(Y1_{\{n\}}(\gamma_{k})) = E(Y1_{\{n\}}(\gamma))$ for all $n \in \mathbb{N}$ and all $Y \in L^{1}(F)$. (Of course, this is the topology induced on the set of randomized stopping times by a weak-star topology.) The usefulness of this topology is due largely to the following result of Baxter and Chacon [1]. For an early very general compactness argument see LeCam [16].

1.1. THEOREM. The set Γ of randomized stopping times is compact in the Baxter-Chacon topology. If F is countably generated, then Γ is metrizable, and therefore sequentially compact.

The set of all functions M such that

(a) For each $\omega \in \Omega$, $M(\omega, \cdot)$ is a signed measure on $\overline{\mathbb{N}}$;

(b) For each
$$n \in \mathbb{N}$$
, $M(\cdot, \{n\})$ is F_n -measurable;

(c) There is a constant C such that $|M(\omega,k)|\leq C$ a.s. for all $K\subseteq \overline{\mathbf{N}};$

is a topological vector space under the Baxter-Chacon topology. The set Γ' is a compact convex subset of it. The extreme points of Γ' are exactly the ω -distributions of the <u>nonrandomized</u> stopping times. Each element of Γ' can be represented as a continuous average of these extreme points. This can be proved using Choquet's theorem, but it can also be deduced from the equation

(1.2)
$$M = \int_{0}^{1} M_{\gamma_{0}}(\cdot, v) dv$$
,

where $M \in \Gamma'$ corresponds to $\gamma_0 \in \Gamma$, and for each $v \in [0,1]$, we write $M_{\gamma_0}(\cdot, v)$ for the ω -distribution of the nonrandomized stopping time $\omega \Rightarrow \gamma_0(\omega, v)$. Equation (1.2) can be interpreted to mean

(1.3)
$$M(\omega,K) = \int_{0}^{1} M_{\gamma_{0}}(\cdot,v)(\omega,K) dv$$

for all $\omega \in \Omega$, $K \subseteq \mathbb{N}$. It follows from this that

(1.4)
$$E(X_{\gamma_0}) = \int_0^1 E[X_{\gamma_0}(\cdot, v)] dv$$

for any adapted sequence $(X_n)_{n \ \in \ \overline{\mathbb{N}}}$ for which the right-hand side exists.

This equation can be used to "derandomize" optimal stopping times.

1.5. PROPOSITION. Let $(X_n)_{n \in \overline{\mathbb{N}}}$ be adapted to $(F_n)_{n \in \mathbb{N}}$. Then

$$\sup_{\gamma \in \Gamma} E(X_{\gamma}) = \sup_{\sigma \in \Sigma} E(X_{\sigma}),$$

and if one of the suprema is achieved and finite, so is the other.

Proof. Write

$$V = \sup_{\sigma \in \Sigma} E(X_{\sigma}).$$

Assume that $V < \infty$. Suppose there exists $\gamma_0 \in \Gamma$ with $E(X_{\gamma_0}) \ge V$. Then from (1.4), we have

$$V \leq E(X_{\gamma_0}) = \int_0^1 E(X_{\gamma_0}(\cdot, v)) dv$$
$$\leq \int_0^1 V dv = V.$$

Therefore $E(X_{\gamma_0}(\cdot, v)) = V$ for almost all $v \in [0,1]$, and hence for at least one v. But then we have $E(X_{\gamma_0}) \leq V$ for all $\gamma_0 \in \Gamma$, and if $\sup_{\gamma \in \Gamma} E(X_{\gamma})$ is achieved, so is $\sup_{\alpha \in \Sigma} E(X_{\sigma})$.

1.6. COROLLARY. If there exists $\gamma_0 \in \Gamma, \ \mbox{finite a.s., with}$

$$E(X_{\gamma 0}) = \sup_{\gamma \in \Gamma} E(X_{\gamma}) = V,$$

then there also exists $\sigma_0 \in \Sigma$, finite a.s., with

$$E(X_{\sigma_0}) = V.$$

<u>Proof</u>. Represent γ_0 as in (1.2). Then, for almost all ω , $0 = \lambda \{v: \gamma_0(\omega, v) = \infty\}$. So there exists v with both $P\{\gamma_0(\cdot, v) < \infty\} = 1$ and $E(X_{\gamma_0}(\cdot, v)) = V$.

For a derandomization in the vector-valued case, we use Jensen's inequality in a Banach space B.

1.7. THEOREM. Let $(X_n)_{n \in \overline{\mathbb{N}}}$ be an adapted sequence of Bochner integrable random variables in a Banach space B, and let $\phi: B \to \mathbb{R}$ be continuous and convex. Then

$$\sup_{\gamma \in \Gamma} \phi(E(X_{\gamma})) = \sup_{\sigma \in \Sigma} \phi(E(X_{\sigma})),$$

and if one of the suprema is achieved and finite, so is the other. If this supremum is achieved by $\gamma_0 \in \Gamma$ which is finite a.s., then it is also achieved by $\sigma_0 \in \Sigma$ which is finite a.s.

Proof. Write

$$V_{\phi} = \sup_{\sigma \in \Sigma} \phi(E(X_{\sigma}))$$

Assume $V_{\phi} < \infty$. Suppose $\gamma_0 \in \Gamma$ and $\phi(E(X_{\gamma_0})) \ge V_{\phi}$. Represent γ_0 as in (1.4). Then

$$V_{\phi} \leq \phi(E(X_{\gamma_0})) = \phi(\int_0^1 E(X_{\gamma_0}(\cdot, v)) dv)$$
$$\leq \int_0^1 \phi(E(X_{\gamma_0}(\cdot, v))) dv$$
$$\leq \int_0^1 V_{\phi} dv = V_{\phi},$$

so $\phi(E(X_{\gamma_0}(\cdot, v))) = V_{\phi}$ for almost all v. The rest of the proof is as before.

2. Optimal stopping time: general case. In this section we study the optimization of $\phi(EX_{\tau})$, where (X_n) is a Banach-valued process, and ϕ is a real-valued continuous convex function defined on the Banach space (e.g., the norm). Also conditions are given for the convergence of Banach-valued stopped processes X_{γ_n} , when γ_n

are randomized stopping times converging in the Baxter-Chacon topology. B will denote a Banach space with norm || ||.

2.1. LEMMA. Let (γ_n) be a sequence of randomized stopping times that converges to a randomized stopping time γ in the Baxter-Chacon topology. Then for every Bochner integrable random variable Y, and for every function f continuous on $\overline{\mathbf{N}}$, $\mathbb{E}[\mathbf{1}_A \mathrm{Yf}(\gamma_n)]$ converges strongly to $\mathbb{E}[\mathbf{1}_A \mathrm{Yf}(\gamma)]$.

<u>Proof</u>. Fix $f \in C(\overline{\mathbb{N}})$, and first suppose that Y is a stepfunction, i.e., $Y = \sum_{\substack{i \leq i \leq k \\ i \leq i \leq k}} x_i l_A$, where $x_i \in B$, and $A_i \in F$, $1 \leq i \leq k \\ i = 1, \dots, k$. Then for any $\eta \in \Gamma$, we have

$$E Yf(\eta) = \sum_{1 \le i \le k} x_i E[1_A_i f(\eta)].$$

By the definition of the Baxter-Chacon topology on Γ , the sequence $E[1_{A_i}f(\gamma_n)]$ converges to $E[1_{A_i}f(\gamma)]$ for every $i = 1, \ldots, k$, and hence the announced strong convergence holds for step-functions. Now let Y be a general Bochner integrable random variable. Fix $\varepsilon > 0$, and let Z be a step-function such that $E ||Y - Z|| \le \varepsilon$. Then for every $\eta \in \Gamma$ we have

$$||\mathbf{E}[\mathbf{Y}\mathbf{f}(\eta)] - \mathbf{E}[\mathbf{Z}\mathbf{f}(\eta)]|| < \varepsilon ||\mathbf{f}||_{m}.$$

Now apply this inequality with $\eta = \gamma_n$, and $\eta = \gamma$.

Let $(X_n, n \ge 1)$ and X be B-valued random variables, and let $A \in F$. We say that X_n converges to X in distribution on A, in symbols $X_n \Rightarrow X$ on A, if for every continuous and bounded real-valued function g defined on B, $E[1_Ag(X_n)]$ converges to $E[1_Ag(X)]$. The following proposition gives conditions for the convergence of the stopped process X_{γ_n} to X_{γ} if $\gamma_n \neq \gamma(BC)$.

2.2. THEOREM. Let (γ_n) be a sequence of randomized stopping times that converges to $\gamma \in \Gamma$ in the Baxter-Chacon topology. Let (B, || ||) be a Banach space, and let $(X_n \in \overline{\mathbb{N}})$ be a B-valued Bochner integrable adapted process, such that X_n converges strongly almost surely to X_{∞} as $n \to \infty$. Then for every set $A \in F$, X_{γ_n} converges in distribution to X_{γ} on A. If furthermore $E(\sup ||X_n||) < \infty$, then for every set $A \in F$, $E(1_A X_{\gamma_n})$ converges strongly to $E(1_A X_{\gamma})$.

<u>Proof</u>. We prove the second part of the theorem first. Suppose that $E(\sup ||X_n||) < \infty$. Fix K > 1; for every set $A \in F$ and for every n,

$$\begin{split} || E(\mathbf{1}_{A} \mathbf{X}_{\gamma_{n}}) &- E(\mathbf{1}_{A} \mathbf{X}_{\gamma}) || &\leq || E(\mathbf{1}_{A \cap \{\gamma_{n} \leq K\}} \mathbf{X}_{\gamma_{n}}) - E(\mathbf{1}_{A \cap \{\gamma \leq K\}} \mathbf{X}_{\gamma}) || \\ &+ || E(\mathbf{1}_{A \cap \{\gamma_{n} > K\}} \mathbf{X}_{\omega}) - E(\mathbf{1}_{A \cap \{\gamma > K\}} \mathbf{X}_{\omega}) || \\ &+ || E[\mathbf{1}_{A \cap \{K < \gamma_{n} < \omega\}} (\mathbf{X}_{\gamma_{n}} - \mathbf{X}_{\omega})] || + || E[\mathbf{1}_{A \cap \{K < \gamma < \omega\}} (\mathbf{X}_{\gamma} - \mathbf{X}_{\omega})] || . \end{split}$$

Hence

$$||E(1_{A}X_{\gamma_{n}}) - E(1_{A}X_{\gamma})|| \leq \sum_{1 \leq i \leq K} ||E[1_{A}X_{i}1_{\{i\}}(\gamma_{n})] - E[1_{A}X_{i}1_{\{i\}}(\gamma)]|| + ||E[1_{A}X_{\omega}1_{\{K+1,\omega\}}(\gamma_{n})] - E[1_{A}X_{\omega}1_{\{K+1,\omega\}}(\gamma)]|| + 2E[1_{A}\sum_{K < i < \omega} ||X_{i} - X_{\omega}||] .$$

Since X_n converges strongly to X_∞ a.s. on A, the sequence $1_A \sup_{K < i < \infty} ||X_i - X_\infty||$, dominated by $\sup ||X_n||$, converges to zero a.s. as $K \to \infty$. Fix $\varepsilon > 0$, and choose K such that $E[1_A \sup_{K < i < \infty} ||X_i - X_\infty||] < \varepsilon$. Then applying Lemma 2.1 with $Y = 1_A X_i$, $f = 1_{\{i\}}$, and with $Y - 1_A X_\infty$, $f = 1_{[K+1,\infty]}$, one can choose n_0 such that for every $i = 1, \ldots, K$, one has

$$\sup_{\substack{n \ge n_0}} ||\mathbb{E}[\mathbb{I}_A X_i \mathbb{1}_{\{i\}}(\gamma_n)] - \mathbb{E}[\mathbb{I}_A X_i \mathbb{1}_{\{i\}}(\gamma)]|| \le \varepsilon/K,$$

and also

$$\sup_{n \ge n_0} \| \mathbb{E}[\mathbf{1}_A \mathbf{X}_{\infty} \mathbf{1}_{[K+1,\infty]}(\mathbf{y}_n)] - \mathbb{E}[\mathbf{1}_A \mathbf{X}_{\infty} \mathbf{1}_{[K+1,\infty]}(\mathbf{y})] \| \le \varepsilon.$$

Then $n \ge n_0$ implies $||E(1_A X_{\gamma_n}) - E(1_A X_{\gamma})|| \le 4\varepsilon$, which proves the second statement in the proposition.

We now prove the first assertion of the theorem. Let g be a continuous bounded function from B to R, and let $Z_n = g(X_n)$, $n \in \overline{\mathbb{N}}$. The real-valued process (Z_n) clearly satisfied the two assumptions $Z_n \neq Z_{\infty}$ a.s., and $E(\sup|Z_n|) < \infty$. Hence by the first argument, for every $A \in F$, $E[1_A g(X_{\gamma})]$ converges to $E[1_A g(X_{\gamma})]$. This completes the proof.

An example of a process (X_n) satisfying the hypotheses of Theorem 2.2 is an L_1 -bounded martingale with values in a Banach space B with the Radon-Nikodym Property.

2.3. COROLLARY. Let (B, || ||) be a Banach space, let $\phi: B \to \mathbb{R}$ be a continuous function. Let $(X_n: n \in \overline{\mathbb{N}})$ be a B-valued adapted process such that $E(\sup ||X_n||) < \infty$, and such that X_n converges strongly almost surely to X_{∞} . Then there exists a randomized stopping time γ such that

$$\phi(\mathrm{EX}_{\gamma}) = \mathbb{V}_{\phi} = \sup \{\phi(\mathrm{EX}_{\eta}) : \eta \in \Gamma\} < \infty.$$

<u>Proof</u>. Since only countably many Bochner integrable random variables are involved, we may assume that F is countably generated. Choose a sequence γ_n in Γ such that $\lim_{\phi}(EX_{\gamma_n}) = V_{\phi}$. Since the set Γ is sequentially compact for the Baxter-Chacon topology, there exists a subsequence (γ_{n_k}) of (γ_n) , and a $\gamma \in \Gamma$ such that $\gamma_{n_k} \neq \gamma(BC)$, By Proposition 2.2, the sequence EX_{γ_n} converges strongly to EX_{γ} ; the continuity of ϕ implies that $\phi(EX_{\gamma}) \neq \phi(EX_{\gamma}) = V_{\phi} < \infty$.

Using the results in Section 1, we obtain the existence of <u>non-</u> <u>randomized</u> optimal stopping times if ϕ is convex.

2.4. THEOREM. Let $(\mathbb{B}, || ||)$ be a Banach space and let $\phi: \mathbb{B} \to \mathbb{R}$ be a convex continuous function. Let $(X_n: n \in \overline{\mathbb{N}})$ be a B-valued process such that $\mathbb{E}(\sup ||X_n||) < \infty$, and X_n converges strongly a.s. to X_{∞} as $n \to \infty$. Then there exists a nonrandomized stopping time $\sigma \in \Sigma$ such that

(2.5)
$$\phi(EX_{\sigma}) = V_{\phi} = \sup\{\phi(EX_{\tau}) : \tau \in \Sigma\}$$
$$= \sup\{\phi(EX_{\gamma}) : \gamma \in \Gamma\} < \infty.$$

<u>Proof</u>. Since the function ϕ is continuous, Corollary 2.3 insures the existence of an optimal randomized stopping time $\gamma \in \Gamma$. By Theorem 1.7, the convexity of ϕ insures that $\sup\{\phi(EX_{\tau}): \tau \in \Sigma\} = \sup\{\phi(EX_{\gamma}): \gamma \in \Gamma\}$, and that there exists a nonrandomized stopping time $\sigma \in \Sigma$ such that $V_{\phi} = \phi(EX_{\sigma})$.

We now give examples of processes $(X_n: n \in \overline{\mathbb{N}})$ and functions ϕ

that satisfy the assumptions of Theorem 2.4. Recall that if $(Y_n: n \in \mathbb{N})$ is a stationary B-valued process with $E ||Y_1|| < \infty$, then by E. Mourier's ergodic theorem [20], the Cesaro averages $X_n = \frac{1}{n} \sum_{i \leq n} Y_i$ converge strongly a.s. to a random variable X_{∞} with $EX_{\infty} = EY_1$.

2.6. THEOREM. Let (B, || ||) be a Banach space, and let (Y_n) be a B-valued stationary stochastic process with $E(||Y_1|| \log^+ ||Y_1||) < \infty$. For every $n \in \mathbb{N}$, set $X_n = \frac{1}{n} \sum_{i \le n} Y_i$, and let X_∞ be the almost sure limit of X_n . Then given any continuous convex function $\phi: B \to \mathbb{R}$, there exists a nonrandomized stopping time $\sigma \in \Sigma$ such that

(2.7)
$$\phi(EX_{\sigma}) = V_{\phi} = \sup\{\phi(EX_{\tau}): \tau \in \Sigma\} < \infty.$$

<u>Proof.</u> By Wiener's dominated ergodic theorem applied to the real-valued stationary process $||Y_n||$, we have $\sup ||X_n|| \le \sup \frac{1}{n} \sum_{1 \le i \le n} ||Y_i|| \in L_1$ (see e.g. [10], p. 678). Now apply Mourier's theorem and Theorem 2.4.

2.8. COROLLARY. Let $(Y_n, n \in \mathbb{N})$, and $(X_n : n \in \overline{\mathbb{N}})$ be as in Theorem 2.6. Given any convex set $C \subset B$, and for every $x \in B$, let $\phi(x)$ denote the distance between x and C. Then there exists an optimal stopping time for ϕ , i.e., an element $\sigma \in \Sigma$ such that (2.7) is satisfied for ϕ .

<u>Proof</u>. It suffices to notice that the distance between x and a convex set is a continuous, convex, real-valued function.

The corollary shows in particular that there exists an optimal stopping time for the norm of the Cesaro averages X_n of a stationary, L Log L-bounded process taking values in \mathbb{R}^2 . The following example implies that there does not exist a stopping time $\sigma \in \Sigma$ optimal for the X_n ; i.e., such that $EX_{\sigma} = \sup\{EX_{\tau}: \tau \in \Sigma\}$, even in the case where the Y_i 's are independent, identically distributed, positive and bounded. (The supremum is to be taken in the coordinate-wise ordering of \mathbb{R}^2 .) This example also shows that the stopping times σ such that $||EX_{\sigma}|| = V_{||} ||$ depend on the choice of the norm || ||, and that given a norm, the optimal stopping times for $||EX_{\sigma}||$ and for $E ||X_{\sigma}||$ need not be the same.

2.9. Example. Let (A_n) be a sequence of independent events each of probability 1/2. For every $n \in \mathbb{N}$, set

$$Y_n = (1,0)I_{A_n} + (0,1)I_{A_n^c}, \quad X_n = \frac{1}{n} \sum_{1 \le i \le n} Y_i,$$

and let $X_{\omega} = (\frac{1}{2}, \frac{1}{2})$ be the a.s. limit of X_n . For every randomized stopping time $\gamma \in \Gamma$, and for every $(\omega, v) \in \Omega \times [0,1]$, $X_{\gamma}(\omega, v) = (a_{\gamma}(\omega, v), b_{\gamma}(\omega, v))$, with $a_{\gamma}(\omega, v) + b_{\gamma}(\omega, v) = 1$. Hence if $EX_{\gamma} = (x_{\gamma}, y_{\gamma})$, then $x_{\gamma} + y_{\gamma} = 1$. However, let σ_1 [resp., σ_2] be the a.s. finite stopping time defined by $\sigma_1(\omega) = \inf\{n: \omega \in A_n\}$ [resp., $\sigma_2(\omega) = \inf\{n: \omega \in A_n^c\}$]. Then

$$[x_{\sigma_1}]_1 = 1_{A_1} + \frac{1}{2} 1_{A_1^c \cap A_2} + \dots + \frac{1}{p} 1_{A_1^c \cap \dots \cap A_{p-1}^c \cap A_p} + \dots, \text{ and }$$

 $EX_{\sigma_1} = (x_{\sigma_1}, y_{\sigma_1}) \quad \text{with} \quad x_{\sigma_1} = \sum_{i \ge 1}^{\infty} \frac{1}{i} (\frac{1}{2})^i > \frac{5}{8}. \quad \text{A similar computation}$

shows that EX =
$$(x_{\sigma_2}, y_{\sigma_2})$$
 with $y_{\sigma_2} > \frac{5}{8}$. Hence

$$\begin{split} \sup\{\mathsf{EX}_{\sigma}:\ \sigma\in\Sigma,\ \sigma\text{ finite a.s.}\}>(\frac{5}{8},\frac{5}{8}), \text{ and this supremum cannot}\\ \text{be achieved by a randomized stopping time. Now set }||(\mathbf{x},\mathbf{y})||_1=|\mathbf{x}|+|\mathbf{y}|\\ \text{and }||(\mathbf{x},\mathbf{y})||_{\omega}=\sup(|\mathbf{x}|,|\mathbf{y}|). \text{ Then for } \mathbf{i}=1,\ \infty, \text{ and for every}\\ \gamma\in\Gamma,\ ||\mathsf{EX}_{\gamma}||_{\mathbf{i}}\leq\mathsf{E}(||\mathbf{X}_{\tau}||_{\mathbf{i}})\leq 1. \text{ By the argument given above, for}\\ \text{every stopping time }\ \tau\in\Sigma,\ ||\mathsf{EX}_{\tau}||_1=\mathsf{E}||\mathbf{X}_{\tau}||_1=1. \text{ Clearly}\\ \mathsf{E}||\mathbf{X}_{1}||_{\infty}=1,\ ||\mathsf{EX}_{1}||_{\infty}=\frac{1}{2}, \text{ and if }\ \sigma_{1} \text{ is the stopping time defined}\\ \text{above then }\ ||\mathsf{EX}_{\sigma_{1}}||_{\infty}>\frac{5}{8}. \text{ Hence }\ \sigma=1 \text{ is optimal for }\ ||\ ||_{1},\\ \text{but not for }\ ||\ ||_{\infty}. \end{split}$$

The example shows that for a Banach lattice B there need not exist an optimal stopping time. However, for a large class of lattices there exists a maximal stopping time for B^+ .

2.10. COROLLARY. Let B be a Banach lattice such that for any $x, y \in B^+$, x < y implies ||x|| < ||y|| (L_p-spaces have this property if $1 \le p < \infty$). Then under the conditions of Theorem 2.4, and assuming also the process positive, there exists a <u>maximal</u> stopping time σ ; i.e., $\sigma \in \Sigma$ such that for every $\tau \in \Sigma$, the inequality $EX_{\sigma} < EX_{\tau}$ fails.

<u>Proof</u>. Set $\phi(\mathbf{x}) = ||\mathbf{x}||$, and let σ be an optimal stopping time

for ϕ , i.e., suppose that (2.5) holds. For any $\tau \in \Sigma$, the inequality $\text{EX}_{\sigma} < \text{EX}_{\tau}$ implies $||\text{EX}_{\sigma}|| < ||\text{EX}_{\tau}||$, which is a contradiction. Hence σ is maximal.

We show that if the process (X_n) takes values in \mathbb{R}^p , one can weaken the assumption that X_n converges a.s. and obtain a result similar to Proposition 2.2. The case of \mathbb{R}^p can be also reduced to the case of $\mathbb{R}^1 = \mathbb{R}$ by consideration of linear functionals, but the proof given below is more in the spirit of the present paper.

2.11. PROPOSITION. Let (γ_n) be a sequence of randomized stopping times that converges to a randomized stopping time γ in the Baxter-Chacon topology. Let $(X_n : n \in \overline{\mathbb{N}})$ be a stochastic process taking values in \mathbb{R}^p , and let $A \in F$. Suppose that

(i) $X_{\infty} \geq \overline{\lim} X_{n}$ on A, and $1_{A}X_{\infty}$ is integrable,

(ii) $\sup(l_{A}X_{n}^{+})$ is integrable,

(iii) $\sup E(1_{A}X_{n}) \in \mathbb{R}^{p}$,

(iv) $E(1_A X_{\gamma}^{-}) \in \mathbb{R}^p$. Then $E(1_A X_{\gamma}) \ge \overline{\lim} E(1_A X_{\gamma_p})$.

Then

$$E(1_{A}X_{\gamma}) = E(1_{A \cap \{\gamma \leq K\}}X_{\gamma}) + E(1_{A \cap \{K < \gamma < \infty\}}X_{\gamma}) + E(1_{A \cap \{\gamma = \infty\}}X_{\infty})$$

$$\geq E(1_{A \cap \{\gamma \leq K\}}X_{\gamma}) - \varepsilon u + E(1_{A \cap \{K < \gamma < \infty\}}X_{\infty}) - \varepsilon u + E(1_{A \cap \{\gamma = \infty\}}X_{\infty}).$$

Applying Lemma 2.1 with
$$Y = 1_A X_i$$
, $f = 1_{\{i\}}$, and with $Y = 1_A X_{\infty}$,
 $f = 1_{[K+1,\infty]}$, we obtain

$$E(1_A X_{\gamma}) \geq \lim_{n} E(1_A \cap \{\gamma_n \leq K\} X_{\gamma_n}) + \lim_{n} E(1_A \cap \{\gamma_n > K\} X_{\infty}) - 2\varepsilon u$$

$$\geq \overline{\lim} E(1_A \cap \{\gamma_n \leq K\} X_{\gamma_n}) + E(1_A \cap \{\gamma_n = \infty\} X_{\gamma_n})$$

$$+ E(1_A \cap \{K < \gamma_n < \infty\} \overline{\lim} X_k)\} - 2\varepsilon u$$

$$\geq \overline{\lim} E(1_A 1_{\{\gamma_n \leq K\}} \cup \{\gamma_n = \infty\} X_{\gamma_n})$$

$$+ E(1_A \cap \{K < \gamma_n < \infty\} \sum_{K < i < \infty} X_i)\} - 3\varepsilon u$$

$$\geq \overline{\lim} E(1_A X_{\gamma_n}) - 3\varepsilon u.$$

2.12. THEOREM. Let $(X_n: n \in \mathbb{N})$ be a stochastic process taking values in \mathbb{R}^p , and such that $\mathbb{E}(\sup_{n \in \mathbb{N}} \sum_{i=1}^{p} |(X_n)_i|) < \infty$, and $X_{\infty} \geq \overline{\lim} X_n$. Let ϕ be an increasing continuous function defined on the closed convex hull of $\bigcup \{X_n(\Omega): n \in \overline{\mathbb{N}}\}$. Then there exists an optimal randomized stopping time $\gamma \in \Gamma$ such that

$$\phi(\mathrm{EX}_{\gamma}) = \mathrm{V}_{\phi} = \sup\{\phi(\mathrm{EX}_{\eta}): \eta \in \Gamma\}.$$

If in addition ϕ is assumed to be convex, then the optimal time can be chosen non-random, i.e., there exists $\sigma \in \Sigma$ such that

$$\phi(\mathrm{EX}_{\sigma}) = \mathbb{V}_{\phi} = \sup\{\phi(\mathrm{EX}_{\tau}) : \tau \in \Sigma\} = \sup\{\phi(\mathrm{EX}_{\gamma}) : \gamma \in \Gamma\}.$$

<u>Proof</u>. Let (γ_n) be a sequence in Γ such that $V_{\phi} = \lim \phi(EX_{\gamma_n}) = \sup\{\phi(EX_{\eta}): \eta \in \Gamma\}$. Let (γ_n_k) be a subsequence of (γ_n) that converges to an element $\gamma \in \Gamma$ in the Baxter-Chacon topology. Then by Proposition 2.11, $E(X_{\gamma}) \geq \overline{\lim} E(X_{\gamma_n})$. The monotonicity and continuity of ϕ implies that

$$\phi(EX_{\gamma}) \geq \phi(\overline{\lim} EX_{\gamma_n}) \geq \overline{\lim} \phi(EX_{\gamma_n}) = V_{\phi}.$$

If ϕ is convex, then Theorem 1.7 shows that there also exists an optimal <u>non-random</u> stopping time $\sigma \in \Sigma$.

Finally we show that there exists a <u>finite</u> optimal stopping time for the process $X_n = ||\frac{1}{n} \sum_{1 \le i \le n} Y_i||$, where Y_i is a Banach-valued independent identically distributed sequence and $||Y_1|| \in L_p$, p > 1, thus generalizing the result of B. Davis [8] to Banach-valued processes. For this the condition $E(||Y_1|| \log^+ ||Y_1||) < \infty$ is not sufficient even in the real-valued case, as shown by M. Klass [14].

2.13. THEOREM. Let B be a Banach space, and let $\phi: B \to \mathbb{R}$ be a continuous function such that $\phi(x + y) \leq \phi(x) + \phi(y)$, and $\phi(\alpha x) = \alpha \phi(x)$ for every $\alpha \geq 0$, and for every $x, y \in B$. Let $(Y_n: n \in \mathbb{N})$ be an independent identically distributed B-valued sequence of random variables with mean 0, and with $E ||Y_1||^p < \infty$ for some p > 1. For every $n \geq 1$ let $X_n = \frac{1}{n} \sum_{i \leq n} Y_i$, and let $X_{\infty} = 0$. Then every stopping time $\alpha \in \Sigma$ such that $\phi[EX_{\sigma}] = V_{\phi} = \sup\{\phi(EX_{\tau}): \tau \in \Sigma\}$ satisfies $P(\sigma < \infty) = 1$. Hence there exists an a.s. finite stopping time $\sigma \in \Sigma$ such that $\phi(EX_{\sigma}) = V_{\phi}$.

<u>Proof</u>. The assumptions made on ϕ clearly imply the convexity of ϕ . Hence by Theorem 2.6 there exists $\sigma \in \Sigma$ such that $\phi(EX_{\sigma}) = V_{\phi}$. It suffices to show that any such σ is finite a.s. Let $\sigma \in \Sigma$ satisfy $\phi(EX_{\sigma}) = V_{\phi}$, and let $x = EX_{\sigma}$. By the Hahn-Banach theorem, there exists a linear functional x^* on B such that $x^*(x) = \phi(x)$, and $-\phi(-y) < x^*(y) \le \phi(y)$ for every $y \in B$. The continuity of ϕ clearly implies t-e continuity of x^* . For every $\tau \in \Sigma$, we have

$$\mathbb{E}[\mathbf{x}^{*}(\mathbf{X}_{\tau})] = \mathbf{x}^{*}[\mathbf{E}\mathbf{X}_{\tau}] \leq \phi[\mathbf{E}\mathbf{X}_{\tau}] \leq \mathbf{V}_{\phi}.$$

Since $E[x^*(X_{\sigma})] = x^*(x) = \phi(x) = V_{\phi}$, the stopping time σ is optimal for the real-valued process $(x^*(X_n))$. Set $Z_n = x^*(Y_n)$; since x^* is continuous, and $E(||Y_1||^p) < \infty$, we have $E|Z_n|^p < \infty$. Now $x^*(X_n)$ are Cesaro averages of the real-valued process Z_n . Since B. Davis [8] has proved that an optimal stopping time σ for such a process $(x^*(X_n))$ is finite a.s., the proof is concluded. 3. Stopping rules under a weak independence assumption. In this section we introduce a condition (I) weaker than independence, and show that under (I) a stationary Banach-valued process (Y_n) is of class L Log L if and only if for every stopping time σ ,

 $E(1_{\{\sigma < \infty\}} \frac{||Y_{\sigma}||}{\sigma}) < \infty$. A similar characterization is obtained in terms

of the Cesaro averages.

Let $(A_n)_{n\geq 1}$ be a family of σ -algebras; typically A_n is generated by a single random variable Y_n . Let $F_n = \sigma(\bigcup A_1)$. We say that (A_n) [or (F_n)] satisfies the condition (I) if there exists a strictly increasing sequence of integers $(N_k)_{k\geq 1}$, and a constant α with $0 \leq \alpha < 1$, such that

$$(3.1) \qquad \qquad \overline{\lim} \, \frac{N_k}{k} < \infty,$$

(3.2)
$$\forall k \ge 1, \forall A \in F_{N_k}, \forall C \in A_{N_{k+1}},$$

 $|P(A \cap C) - P(A)P(C)| \le \alpha P(A)P(C).$

The condition (I) is a weakening of the (*)-mixing condition introduced by Blum-Hanson-Koopmans [4]; see also [23], p. 140. We refer to [4] for examples. In the case when the A_n are atomic and $N_k = k$, the condition (I) coincides with the <u>Vitali-Chow</u> condition (see e.g. Neveu [21], p. 73).

If (A_n) satisfied the condition (I), then for every Banach space (B, || ||) we have

(3.3)
$$\begin{cases} \forall k \geq 2, \quad \forall X \in L_1^B(F_{N_{k-1}}), \quad \forall D \in A_{N_k} \\ & || E(1_D X) - P(D)E(X) || \leq \alpha P(D)E ||X|| \end{cases}$$

and

(3.4)
$$\begin{cases} \forall k \geq 2, \quad \forall A \in F_{N_{k}-1}, \quad \forall X \in L_{1}^{B}(A_{N_{k}}), \\ & ||E(1_{A}X) - P(A)E(X)|| \leq \alpha P(A)E ||X|| \end{cases}$$

We only show the assertion 3.3. Let X be an F_{N_k} -measurable

step function, say $X = \sum_{i \le n} x_i l_{A_i}$, with $x_i \in B$, $A_i \in F_{N_{k-1}}$, i = 1, ..., n, and let $D \in A_{N_k}$. Then

$$||E(1_DX) - P(D)E(X)|| \leq \sum_{i \leq n} ||x_i|| |P(A_i \cap D) - P(A_i)P(D)|$$
$$\leq \alpha \sum_{i \leq n} ||x_i|| P(A_i)P(D) = \alpha P(D)E ||X||.$$

Fix $\varepsilon > 0$, let $X \in L_1^B(F_{N_{k-1}})$ and let Z be an $F_{N_{k-1}}$ -measurable step function with E $||X - Z|| < \varepsilon$. Then

$$||E(1_{B}X) - P(D)EX|| \leq 2\varepsilon + ||E(1_{D}Z) - P(D)EZ||$$
$$\leq 2\varepsilon + \alpha P(D)E ||Z|| \leq 4\varepsilon + \alpha P(D)E ||X||.$$

A process $(Y_n)_{n>1}$ is said to satisfy condition (I) if the family $A_n = \sigma(Y_n)$ does.

We prove next our main result on condition (I). If the Y_n are real-valued, independent, and identically distributed, the implications (ii) \Rightarrow (i) and (iii) \Rightarrow (i) are due to Burkholder [5]; the implications (iv) \Rightarrow (i) and (v) \Rightarrow (i) to B. Davis [7] and independently to McCabe-Shepp [18].

3.5. THEOREM. Let B be a Banach space, and let $(Y_n)_{n\geq 1}$ be a stationary B-valued Bochner integrable process. Suppose that (Y_n) satisfies the condition (I) for an increasing sequence of integers (N_L) . Then the following conditions are equivalent:

(i) $E(||Y_1|| \log^+ ||Y_1||) < \infty;$ (ii) $E(\sup ||\frac{Y_n}{n}||) < \infty;$ (iii) $E \sup(\frac{1}{n} \sum_{i \le n} ||Y_i||) < \infty;$ (iv) $\forall \sigma \in \Sigma, E(1_{\{\sigma < \infty\}} ||\frac{Y_{\tau}}{\tau}||) < \infty;$ (v) $\forall \sigma \in \Sigma, E(1_{\{\sigma < \infty\}} ||\frac{1}{\sigma} \sum_{N_k \le \sigma} Y_{N_k}||) < \infty.$

<u>Proof.</u> By the pointwise ergodic theorem, the sequence $\frac{1}{n} \sum_{i \leq n} ||Y_i||$ converges a.s., and hence $||\frac{n}{n}||$ converges a.s. to zero. By Wiener's dominated ergodic theorem applied to the process $||Y_n||$, (i) \Rightarrow (iii)

(see e.g. [10], p. 678). Since

$$\begin{aligned} \|\frac{\mathbf{Y}_{\mathbf{n}}}{\mathbf{n}}\| &= \|\frac{1}{\mathbf{n}}\sum_{\mathbf{i}\leq\mathbf{n}}\mathbf{Y}_{\mathbf{i}} - \frac{1}{\mathbf{n}}\sum_{\mathbf{i}\leq\mathbf{n}-1}\mathbf{Y}_{\mathbf{i}}\| \\ &\leq \|\frac{1}{\mathbf{n}}\sum_{\mathbf{i}\leq\mathbf{n}}\mathbf{Y}_{\mathbf{i}}\| + \|\frac{1}{\mathbf{n}-1}\sum_{\mathbf{i}\leq\mathbf{n}-1}\mathbf{Y}_{\mathbf{i}}\| \end{aligned}$$

(iii) implies (ii). Obviously (ii) \Rightarrow (iv), and (iii) \Rightarrow (v). We only prove (iv) \Rightarrow (i), and (v) \Rightarrow (i). Given α with $0 \leq \alpha < 1$, let (N_k) be the strictly increasing sequence such that $A_n = \sigma(Y_n)$ satisfied the conditions (3.1) and (3.2).

<u>Proof of (iv) \Rightarrow (i)</u>. Fix $\varepsilon > 0$; applying the pointwise ergodic theorem, choose $N_i \ge 1$ and a set $A \in F_{\infty}$ such that for every $n \ge N_i$, we have $||Y_n|| \le n/2$ on A. By assumption (3.1), we also may assume that there exists a constant c such that $N_k \le ck$ for every k. Define a stopping time $\sigma \in \Sigma$ by

$$\sigma = \inf \{ \mathbf{N}_k : \mathbf{N}_k \ge \mathbf{N}_1, \quad || \mathbf{Y}_{\mathbf{N}_k} || \ge \mathbf{N}_k \},$$

with the convention $\inf \emptyset = +\infty$. Clearly $\sigma = +\infty$ on A. Given a process (X_n) , and a stopping time $\tau \in \Sigma$, we write EX_{τ} for $E(1_{\{\tau < \infty\}}X_{\tau})$. By assumption (iv),

$$\infty > E\left(\frac{||Y_{\sigma}||}{\sigma}\right) = \sum_{k \ge i} \frac{1}{N_{k}} \int_{\{\sigma=N_{k}\}} ||Y_{N_{k}}|| dP.$$

The set $\{\sigma \ge N_k\} = \bigcap_{\substack{i \le j \le k-1 \\ i \le j \le k-1 \\ }} \{||Y_{N_j}|| \le N_j\}$ is $F_{N_{k-1}}$ measurable. Applying the relation (3.4) with the set $A = \{\sigma \ge N_k\}$ and $X = 1_{\{ \||Y_{N_k}\| \ge N_k\}} ||Y_{N_k}\|$, we obtain $\infty > (1-\alpha) \sum_{k>i} \frac{1}{N_k} P(\sigma \ge N_k) E(1_{\{ \||Y_{N_k}\| \ge N_k\}} ||Y_{N_k}\|)$

$$\geq (1-\alpha) \sum_{k \geq i} \frac{1}{N_k} P(A) E(1_{\{ \|Y_1\| \geq N_k\}} \|Y_1\|).$$

Since $\alpha < 1$ and P(A) > 0, we have for fixed i

$$\sum_{k \ge i} \frac{1}{N_k} \{ \| Y_1 \{ \| \ge N_k \} \| \| Y_1 \| dP = \int_0^\infty x (\sum_{k \le i} \frac{1}{N_k}) P_{i} \| \| Y_1 \| (dx),$$

where $P_{||Y_1||}$ denotes the distribution of $||Y_1||$. We have that $ck \leq x$ implies $N_k \leq x$. Hence if $x \geq N_i$, we have

$$\sum_{\substack{N_{i} \leq N_{k} \leq x \\ i \leq k \leq x/c}} \frac{1}{c_{k}} \geq \frac{1}{c} \int_{i}^{[\frac{x}{c}]+1} \frac{dx}{x}$$
$$\geq \frac{1}{c} [Log \ x \ - \ Log \ ci].$$

This clearly implies that $E[||Y_1|| Log^+ ||Y_1||] < \infty$.

By the p and henc

<u>Proof of $(v) \Rightarrow (i)$ </u>. Let σ be the stopping time defined in the proof above. Then

$$\begin{split} \mathsf{E}(\frac{1}{\sigma}||\sum_{N_{k}\leq\sigma}Y_{N_{k}}||) &\geq \mathsf{E}(\frac{||Y_{\sigma}||}{\sigma}) - \mathsf{E}(\frac{1}{\sigma}||\sum_{N_{k}+1\leq\sigma}Y_{N_{k}}||) \\ &\geq \mathsf{E}(\frac{||Y_{\sigma}||}{\sigma}) - \mathsf{E}(\frac{1}{\sigma}\sum_{N_{k}+1\leq\sigma}||Y_{N_{k}}||). \end{split}$$
roof of (iv) => (i), it suffices to show that
$$\mathsf{E}(\frac{||Y_{\sigma}||}{\sigma}) < \infty,$$
e that
$$\mathsf{E}(\frac{1}{\sigma}\sum_{N_{j}+1\leq\sigma}||Y_{N_{j}}||) < \infty.$$
We have

$$E\left(\frac{1}{\sigma}\sum_{N_{j+1}\leq\sigma}||Y_{N_{j}}||\right) = \sum_{k\geq i} \frac{1}{N_{k}}E\left(1_{\{\sigma=N_{k}\}}\sum_{j\leq k-1}||Y_{N_{j}}||\right)$$
$$\leq \sum_{k\geq i} \frac{1}{N_{k}}\sum_{1\leq j\leq k-1}E\left(||Y_{N_{j}}||1_{\{||Y_{N_{k}}||\geq N_{k}\}}\right).$$

Applying the relation (3.3) with $X = ||Y_{N_j}||$, which is measurable with respect to $F_{N_{k-1}}$, and with $D = \{ ||Y_{N_k}|| \ge N_k \} \in A_{N_k}$, we have

$$E\left(\frac{1}{\sigma}\sum_{N_{k}-1\leq\sigma}\|Y_{N_{k}}\|\right) \leq (1+\alpha)\sum_{k\geq i}\frac{1}{N_{k}}\sum_{1\leq j\leq k-1}E\|Y_{N_{j}}\|P(\|Y_{N_{k}}\|\geq N_{k})$$
$$\leq (1+\alpha)E\|Y_{1}\|\sum_{k\geq i}P(\|Y_{1}\|\geq N_{k})$$

$$\leq$$
 (1+ α) (E $||Y_1||$)² < ∞ .

This completes the proof of the theorem.

The theorem of Davis [7] and McCabe-Shepp [18], and the theorem of Dvoretzky (see e.g.[6], p. 86) were extended to <u>tactics</u> on directed sets, in particular to stopping times in $\mathbb{N} \times \mathbb{N}$, by Krengel-Sucheston [15], by application of their linear embedding theorem. Since, as noted in [16], the linear embedding preserves also vector-valued integrals, the results of the present paper concerning averages of vector-valued independent identically distributed random variables extend similarly to directed sets.

4. <u>Continuous parameter</u>. In this section we extend some results of Sections 1 and 2 to continuous-parameter processes. Let (Ω, F, P) be a probability space, and let $(F_t: t \in [0,\infty])$ be an increasing right-continuous family of sub- σ -algebras of F such that F_0 contains the null sets. A <u>stopping time</u> of (F_t) is a map $\sigma: \Omega \to [0,\infty]$ such that $\{\omega: \sigma(\omega) \leq t\} \in F_t$ for every $t \in [0,\infty]$; we again write Σ for the set of all stopping times. A <u>randomized</u> <u>stopping time</u> for (F_t) is a map $\gamma: \Omega \times [0,1] \to [0,\infty]$ which is a stopping time for $(F_t \times B)$; we assume that γ is non-decreasing and left-continuous in the second variable. We will write Γ for the set of randomized stopping times. For every $\gamma \in \Gamma$, the ω -distribution of γ is defined by

 $M(\omega, [0,t]) = \sup\{v: \gamma(\omega, v) < t\}$

for $\omega \in \Omega$, $t \in [0,\infty]$. Then M has the following properties: (a) For fixed $\omega \in \Omega$, the function $M(\omega, \cdot)$ defines a probability measure on $\overline{\mathbb{R}}$.

(b) For fixed $t \in [0,\infty]$, the function $M(\cdot,[0,t])$ is F_{t} -measurable.

We will write Γ' for the set of all functions M satisfying (a) and (b). There is a one-to-one correspondence between Γ and Γ' (see [1] for details). As in the discrete case, $M \in \Gamma'$ corresponds to a <u>nonrandomized</u> stopping time σ if and only if $M(\omega, [0,t]) = 1_{\{\sigma \leq t\}}(\omega)$. The Baxter-Chacon topology on Γ is the coarsest topology such that for every $Y \in L^1(F)$, for every $f \in C([0,\infty])$, the map $\gamma \to \int Y(\omega) f[\gamma(\omega, v)] P(d\omega) \lambda(dv)$ is continuous. Baxter and Chacon have shown that the set Γ is compact for this topology ([1] Theorem 1.5).

The following theorem is analogous to a result used in Section 1.

The extreme points of Γ' are exactly the 4.1. THEOREM. w-distributions of the nonrandomized stopping times.

In the sequel we will consider an adapted Banach-valued process $(X_{+},F_{+},t \in [0,\infty])$ such that

$$(4.2) E(\sup ||X_{y}||) < \infty,$$

(4.4)
$$\forall \sigma_n \in \Sigma, \sigma_n \nearrow \sigma \text{ implies } X_{\sigma_n} \xrightarrow{} X_{\sigma} \text{ a.s.},$$

For real-valued processes (X_+) , condition (4.4) is equivalent with quasi-left-continuity, and the property $X_{\infty} = \lim_{t \to \infty} X_t$ a.s. The following theorem is an analog of (1.4), above.

4.5. THEOREM. Let $\gamma \in \Gamma$ be a randomized stopping time. If (X_r) is an adapted process satisfying the conditions (4.2) and (4.3), then

$$E(X_{\gamma}) = \int_{0}^{1} E X_{\gamma(\cdot,v)} dv.$$

Proof. As in (1.2), we have

$$M_{\gamma} = \int_{0}^{1} M_{\gamma}(\cdot, v) dv.$$

Then for every $A \in F$, for every $t \in [0, \infty]$.

$$\int \mathbf{1}_{A} \mathbf{M}_{\gamma}(\omega, [0,t]) \mathbf{P}(d\omega) = \int_{0}^{1} \int \mathbf{1}_{A}(\omega) \mathbf{M}_{\gamma}(\cdot, \mathbf{v})(\omega, [0,t]) \mathbf{P}(d\omega) d\mathbf{v}$$

=
$$\int 1_{\Lambda}(\omega) \lambda \{v: \gamma(\omega, v) \leq t\} P(d\omega)$$
.

Hence $M_{\gamma}(\omega, [0,t]) = \lambda\{v: \gamma(\omega, v) \leq t\}$ a.s. For every $j \geq 1$, let $\gamma[j]$ be the smallest element $k/2^j$ such that $\gamma \leq k/2^j$. Then for every $j \ge 1$,

$$E(X_{\gamma[j]}) = \int X_{2^{-j}}(\omega)M(\omega, [0, 2^{-j}])P(d\omega)$$

$$+ \int \sum_{k\geq 2} X_{k2^{-j}}(\omega)M(\omega,](k-1)2^{-j}, k2^{-j}])P(d\omega)$$

$$= \int X_{2^{-j}}(\omega)\lambda\{v: \gamma(\omega, v) \leq 2^{-j}\}P(d\omega)$$

$$+ \int \sum_{k\geq 2} X_{k2^{-j}}(\omega)\lambda\{v: (k-1)2^{-j} < \gamma(\omega, v) \leq k2^{-j}\}P(d\omega)$$

$$= \int_{0}^{1} E(X_{\gamma}(\cdot, v)[j])dv.$$

Letting $j \rightarrow \infty$, and using the properties (4.2) and (4.3), we obtain

$$E(X_{\gamma}) = \lim_{j} EX_{\gamma[j]} = \lim_{j \to 0} \int_{0}^{1} E(X_{\gamma(\cdot,v)[j]}) dv$$
$$= \int_{0}^{1} E(X_{\gamma(\cdot,v)}) dv.$$

The following theorem allows us to "derandomize" continuousparameter optimal stopping times. The proof, similar to the proof of Theorem 1.7, is omitted.

4.6. THEOREM. Let B be a Banach space, let $\phi: B \rightarrow \mathbb{R}$ be a continuous and convex function. Let (X_t) be a B-valued adapted process with the properties (4.2) and (4.3). Then

$$V_{\phi} = \sup_{\gamma \in \Gamma} \phi[E(X_{\gamma})] = \sup_{\sigma \in \Sigma} \phi[E(X_{\sigma})],$$

and if one of these suprema is achieved and finite, so is the other one. If the supremum is achieved by $\gamma_0 \in \Gamma$ which is finite a.s., then it is also achieved by $\sigma_0 \in \Sigma$ which is finite a.s.

We now study the convergence of the stopped sequence X_{γ_n} , when $\gamma_n \rightarrow \gamma$ (BC) and (X_t) is an adapted process with the Properties (4.2) - (4.4).

The following theorem is a generalization of Corollary 1.15 in [1], and the proof is similar.

4.7. THEOREM. Let B be a Banach space, let $(X_t: t \in [0,\infty])$ be

a B-valued right-continuous, quasi-left continuous process such that $E(\sup ||X_t||) < \infty$. Let γ_n be a sequence of randomized stopping times such that γ_n converges to a randomized stopping time γ in the Baxter-Chacon topology. Suppose that $\limsup_{a \to \infty} P \times \lambda(\gamma_n > a) = 0$. Then for every $A \in F$, $E(1_A X_{\gamma_n})$ converges to $E(1_A X_{\gamma})$.

<u>Proof</u>. The proof of this theorem depends on several lemmas stated below.

4.8. LEMMA. Let (γ_n) be a sequence of randomized stopping times taking values in a finite set $K \subset [0, \infty]$, and converging (BC) to a randomized stopping time γ . Suppose that the random variables $(X_+, t \in K)$ are Bochner integrable. Then

$$E(1_A X_{\gamma_n}) \rightarrow E(1_A X_{\gamma}), A \in F.$$

<u>Proof</u>. The lemma is first proved for step functions $(X_t: t \in K)$. The proof is similar to the one in [1], Lemma 4.1.

For every $\gamma \in \Gamma$, and every $j \ge 1$, let $\gamma[j]$ be the j-th dyadic approximation of γ from above, i.e., $\gamma[j](\omega, v) = \inf\{k/2^j; k/2^j > \gamma(\omega, v)\}$ (with the convention $\inf \emptyset = +\infty$).

The following lemma is similar to Theorem 1.8 [1], and the proof is omitted.

4.9. LEMMA. Let $\gamma_n \in \Gamma$ converge (BC) to $\gamma \in \Gamma$, and satisfy lim sup $P \times \lambda \{\gamma_n \ge a\} = 0$. Let B be a Banach space, and let (X_t) $a \rightarrow \infty$ n be a B-valued right-continuous process such that $E(\sup ||X_t||) < \infty$. Suppose that for every $A \in F$

 $\lim_{j} E(l_{A}X_{\gamma_{n}}[j]) = E(l_{A}X_{\gamma_{n}}) \text{ uniformly in } n.$ Then for every $A \in F$, $E(l_{A}X_{\gamma}) = \lim_{j \to \infty} E(l_{A}X_{\gamma_{n}}).$

The following lemma is similar to Lemma 5.1 [1]; again the proof is omitted.

4.10. LEMMA. Let (X_t) be a Banach valued process such that $E(\sup ||X_t||) < \infty$. Suppose that for every $\varepsilon > 0$, and for every

sequence (σ_n) in Σ such that $\limsup_{a \to \infty} P(\sigma_n > a) = 0$, one has $\lim_{j \to \infty} \sup_{n} P\{ ||X_{\sigma_n[j]} - X_{\sigma_n}|| > \epsilon \} = 0$. Then for every $A \in F$, and for every sequence $\gamma_n \in \Gamma$ such that $\gamma_n \to \gamma$ (BC), and $\limsup_{a \to \infty} P \times \lambda(\gamma_n > a) = 0$, one has

$$\lim_{j} E(1_{A}X_{\gamma_{n}}[j]) = E(1_{A}X_{\gamma_{n}}) \text{ uniformly in } n.$$

Sketch of Proof of Theorem 4.7. Because of Lemmas 4.8-4.10 and the condition $E(\sup ||X_t||) < \infty$, the proof of the theorem reduces to the proof of the following: for every $\varepsilon > 0$, and for every sequence (σ_n) in Σ such that $\limsup P(\sigma_n > a) = 0$, one has $\limsup P(||X_{\sigma_n}[j] - X_{\sigma_n}|| > \varepsilon) = 0$. This is proved via the arguments given in Lemma 5.9 and 5.11 in [1], setting f(x,y) = ||x-y|| / (1+ ||x-y||), and $Y(s,t) = \sup\{f(X_s,X_r): s \le r \le t\}$.

4.11. COROLLARY. Let (γ_n) be a sequence of randomized stopping times such that γ_n converges to a randomized stopping time γ in the Baxter-Chacon topology. Let (X_t) be a Banach-valued process with the properties (4.2)-(4.4). Then for every $A \in F$, $E(1_A X_\gamma) = \lim E(1_A X_{\gamma_n})$, and X_{γ_n} converges in distribution to X_γ on A.

<u>Proof</u>. Let T: $[0,\infty] \rightarrow [0,1]$ be a continuous bijective and increasing function. For every $s \in [0,1]$, set $Y_s = X_{T^{-1}(s)}$ and $G_s = F_{T^{-1}(s)}$. For every $s \ge 1$, set $Y_s = X_{\infty}$ and $G_s = F_{\infty}$. The

proof of the theorem reduces to the proof of the convergence of $E(1_A Y_{T \circ \gamma_n})$ to $E(1_A Y_{T \circ \gamma})$. The process (Y_s) clearly satisfied the assumptions (4.2)-(4.4), and the sequence $T_{\circ \gamma_n}$ is bounded by 1, so that Theorem 4.7 applies.

We now deduce the following theorem about the existence of an optimal stopping time for $\phi(\text{EX}_{\sigma})$. It is a continuous parameter analog of Theorem 2.4.

4.12. THEOREM. Let (B, || ||) be a Banach space, and let $\phi: B \to \mathbb{R}$ be a convex continuous function. Let $(X_{+}, t \in [0, \infty])$ be an adapted

process with the properties (4.2)-(4.4). Then there exists a nonrandomized stopping time $\sigma \in \Sigma$ such that

$$\phi(\text{EX}_{\sigma}) = V_{\phi} = \sup\{\phi(\text{EX}_{\tau}) : \tau \in \Sigma\}$$
$$= \sup\{\phi(\text{EX}_{\tau}) : \gamma \in \Gamma\} < \infty$$

<u>Proof</u>. The theorem is a consequence of Theorem 4.6, and Corollary 4.11. We refer to the proof of Theorem 2.4 for details.

REFERENCES

- J. R. Baxter and R. V. Chacon, Compactness of stopping times.
 Z. Wahrscheinlichkeitstheorie verw. Gebiete 40(1977), 169-181.
- [2] J. R. Baxter and R. V. Chacon, Englargement of σ -algebras and compactness of time changes, Canadian J. Math. 29(1977), 1055-1065.
- [3] A. Beck, On the strong law of large numbers, Ergodic Theory (Proc. International Sympos., Tulane Univ., New Orleans, La., 1961), Academic Press, New York (1961), 21-53.
- [4] J. R. Blum, D. L. Hanson, and L. H. Koopmans, On the strong law of large numbers for a class of stochastic processes,
 Z. Wahrscheinlichkeitstheorie verw. Geb. 2(1963), 1-11.
- [5] D. L. Burkholder, Successive conditional expectations of an integrable function, Ann. Math. Stat. 33(1962), 887-893.
- [6] Y. S. Chow, H. Robbins, and D. Siegmund, Great expectations: The theory of optimal stopping, Boston: Houghton Mifflin Co. 1971.
- B. Davis, Stopping rules for S_n/n and the class L log L,
 Z. Wahrscheinlichkeitstheorie verw. Geb. 17(1971), 147-150.
- [8] B. Davis, Moments of random walk having infinite variance and the existence of certain optimal stopping rules for S_n/n , Illinois J. Math. 17(1973), 75-81.

- [9] C. Dellacherie, Convergence en probabilité et topologie de Baxter-Chacon, Université de Strasbourg, Séminaire de Probabilites, année 1976/7, Springer Verlag, Lecture Notes in Math., Vol 649, 1978.
- [10] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York 1957.
- [11] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York 1971.
- [12] R. F. Gundy, On the class L log L martingales and singular integrals, Studia Math. 33(1969), 109-118.
- [13] J. L. Kelley, I. Namioka, et al, Linear Topological Spaces, Van Nostrand, Princeton 1963.
- [14] M. J. Klass, Properties of optimal extended-valued stopping rules for S_n/n, Ann. Probability 5(1973), 719-757.
- [15] U. Krengel and L. Sucheston, Stopping rules and tactics for processes indexed by directed sets, J. Multivariate Analysis 11(1981), 199-229.
- [16] L. LeCam, An extension of Wald's theory of statistical decision functions, Ann. Math. Stat. 26(1955), 69-81.
- [17] L. H. Loomis, Dilations and extremal measures, Advances in Math. 17(1975), 1-13.
- [18] B. J. McCabe and L. A. Shepp, On supremum of S_n/n, Ann. Math. Stat. 41(1970), 2166-2168.
- [19] P. A. Meyer, Convergence faible et compacité des temps d'arrêt d'apres Baxter et Chacon, Université de Strasbourg, Séminaire de Probabilités, anneé 1976/7, Springer Verlag, Lecture Notes in Math., Vol 649, 1978.
- [20] E. Mourier, Les éléments aléatoires dans un espace de Banach, Ann. Ins. Henri Poincaré 13(1953), 161.
- [21] J. Neveu, Discrete Parameter Martingales, North Holland, Amsterdam 1975.
- [22] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, New York 1966.
- [23] P. Revesz, The laws of large numbers, Academic Press, New York and London 1968.

- [24] D. O. Siegmund, Some problems in the theory of optimal stopping, Ann. Math. Stat. 38(1967), 1627-1640.
- [25] J. L. Snell, Application of martingale system theorems, Trans. Amer. Math. Soc. 13(1952), 293-312.

Department of Mathematics Ohio State University Columbus, Ohio 43210

Laboratoire du Calcul des Probabilités Université Paris-VI Tour 56, 4, Place Jussieu 75230 Paris Cedex 05